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Al in the 2020s - Humanoid Robots?
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Al in the 2020s
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Al in the 2020s - “Generative Al”
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Embodiment

embodiment: the degree to which a system can affect / control its sensors

embodiment x large sensor space — the system can reach many states of the environment (tasks)

4 )

Current systems can bring about many useful states in the digital realm,
but remain largely unable to control the physical realm.
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Biological / Neuroscience Perspective

Common Theme

The purpose of the brain is to coordinate
the body’s movement.
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Learning from direct experience of valence
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Mentalizing
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Learning from observing others’ experience

Language

100 thousand years ago

Learning from others’ internally-simulated experience




Biological / Neuroscience Perspective

Common Theme

The purpose of the brain is to coordinate
the body’s movement.

The

EVOLUTION, Al, AND THE
FIVE BREAKTHROUGHS
THAT MADE OUR BRAINS

of
THING-\

™
Life, Feeling, [

MEMOR Y e = SN | GRIF HISTORY
SYSTEMS® - OF INTELLIGENCE

ANTONIO
DAMASIO THE SECRET LIFE

OF THE BRAIN

Eussenia ugea . Steven s wise s of

LISA FELDMAN BARRETT

MAX BENNETT

5 Breakthroughs in the Evolutionary History of Our Brains

7

Steering

600 million years ago

Learning from direct experience of valence

~N

Reinforcement Learning

500 million years ago

Learning from temporally-extended experience

Mental Simulation

200 million years ago

Learning from internally-simulated experience

Mentalizing

15 million years ago

Learning from observing others’ experience

Language

100 thousand years ago

Learning from others’ internally-simulated experience




Challenges of Physical Embodiment

-
Why haven’t consumer robots taken off?

Difficult to scale experiments.
o Upfront and marginal costs are significant.

e Difficult to gather diverse data.
a o Almost entirely limited to sterile lab environments.
e Limited experimental control.

o Research is even more challenging.

/
[}

Safety considerations.
o Huge liability for making mistakes (i.e., progress).
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. : R As a result,
. o I | e  current robotic systems live in ‘impoverished’
i | == 1 sensory environments,
- - e  robotics research progress has been slower.




universal interface / agent

Games & Simulated Environments in Al
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Limitations of the mid-2010s Era Approaches

December 5, 2016

Universe

We're releasing Universe, a software platform for measuring
and training an Al's general intelligence across the
world’s supply of games, websitesag a

Vision / Action Diversity

Limited Trajectory Diversity
— Task = Win the Game

The Malmo Platform for Artificial Intelligence Experimentation*

Katja Hofn Tim Hutton, David Bignell
Microsoft
{matjoh katja.hofmann,a-tihutt,a-dabign } @microsoft.com

Trajectory (Task) Diversity

Limited Visual / Action Diversity
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SIMA: Scalable Instructable Multiworld Agent

A single agent with a universal interface that can be to perform any task in any 3D visual environment...

any task

No Man’s Sky
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SIMA Environments

Desiderata Ideally
° 3D visual environment ° Interesting to humans
° First-person ° Not violence focused
° Complex, open world (~sandbox) ° Diverse

Commercial Video Games

Research Environments

Goat Simultr ‘
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SIMA Agent
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SIMA Evaluation

Eval Basics

. pan on the stove”

* Ground Truth
* OCR
* Human Eval
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Qualitative Results - bomain-General Behaviors

3D First-Person Environments + Shared Interface — Commonalities in Spatial Navigation & Interaction
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Qualitative Results - bomain-Specific Behaviors
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Qualitative Results - Commonalities Across Domains

Go to / get in a vehicle
Go to the Spaceship

NO MAN'S SKY |
4 X L

Drive the Tractor

Get in the Truck
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) |
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Absolute Performance - By Environment

Success Rate (%)

100
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Meaningful progress, but still room for improvement.

R . Ground-Truth
. Human Eval.
Ty e I:I OCR + Human Eval.

Playhouse WorldLab Satisfactory Construction No Man’s Sky Goat Valheim
Lab Simulator 3
Environment
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Absolute Performance - By skill Category

Success Rate (%)
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Hypothesis: The agent struggles with tasks that require more precise control.

Skill Category
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Ablations / Baselines
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Relative Performance - Aggregated Over Environments

And generalization

We have positive transfer Pretraining helps

Our evals require
200 —4—------- - RN\ - R language
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Relative Performance - rer-Environment
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Relative Performance - rer-Environment

Relative Performance (%)
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Relative Performance - rer-Environment

Relative Performance (%)
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Relative Performance

Relative Performance (%)
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Pretrained models are always helpful,

but to varying degrees.. . SIMA
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Relative Performance - rer-Environment

Relative Performance (%)
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Our evals are all dependent on language,
but to varying degrees.
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Classifier-Free Guidance

Evaluated on Playroom, Construction Lab, and WorldLab only.

Relative Performance (%)

200

150

100

50

A CFG is beneficial

But even without it, the agent is still
much better than unconditional

Environment-

Specialized Agent

|
SIMA No CFG No Language
(Ablation) (Ablation)
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Human Baseline Comparison

Evaluated on a subset of No Man’s Sky only.

Even humans struggle
to reach 100% success.

Still not matching
human performance.
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Looking Forward

If we want to achieve the ‘north star’ of general-purpose humanoid robots...

Vs

...then overcoming the challenges of basic research may involve relying, in part, on simulation.

38



Looking Forward

Previous works have lacked diversity in their...

Vs

...trajectories (tasks)...

...and/or their observations / affordances.
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Looking Forward

SIMA is the next generation in simulation-based agent research...

-

Atari

Minecraft, Doom, Sega, ...

Starcraft Il, Dota 2

O O
A A
early 2010s mid-late 2010s late 2010s early-mid 2020s-




Looking Forward

...and advancing simulation-based agent research is likely to yield meaningful insights into creating AGI.

-

The SIMA agent is at the “pre-training” phase
of general-purpose behavior.

Analogous to GPT2/3-era models.

c. 2019

Language Models are Unsupervised Multitask Learners

We are getting glimpses of impressive general capabilities, serezen Tran

but not yet a fully general-purpose agent.

Better language md
and their implicati

L' Dario Amodei ™! Tiya Sutskever * !
February 14,2010

e would

)t A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its
whereabouts are unknown.

ident occurred on the downtown train line, which runs from
on and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy
said it is working with the Federal Railroad Administration to
find the thief.

“The theft of this nuclear material will have significant
negative consequences on public and env:
workforce and the economy of our nation,” said Tom Hicks, the
U.S. Energy Secretary, in a statement. “Our top priority is to
secure the theft and ensure it doesn’t happen ns7

The stolen

release from Department officials.

The Nuclear Regulat i did not immediately release any
information.
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Looking Forward

We may be a handful of innovations away from developing
general-purpose agents, capable of performing any task in any
simulated 3D environment.
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If [an agent] is able to master 10,000 diverse
simulated realities, it may well generalize to our
physical world, which is simply the 10,001st reality.
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Tech Report + Blog Post

Google DeepMind

Google DeepMind Blog
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Scaling Instructable Agents Across Many
Simulated Worlds
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performed while at Google DeepMind, 3University of British Columbia

Buildi: bodied Al that can follow arbitrary language instructions in any 3D envj

a key challenge for creating general Al. Accomplishing this goal requires le;
in perception and embodied actions, in order to accomplish comy
Multiworld Agent (SIMA) project tackles this by training
a diverse range of virtual 3D environments, inclu

mercial video games. Our

arXiv:2404.10179

RESEARCH

A generalist Al agent for 3D virtual
environments

13 MARCH 2024

By the SIMA Team

< Share

We present new research on a Scalable Instructable Mulnwo
Agent (SIMA) that can follow natural-language instr
out tasks in a variety of video game settings
Video games are a key proving ground fog

the real world, games are rich le:
settings and ever-chana
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