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Abstract

Policy-based approaches to reinforcement learn-
ing are conventionally formulated as state-action
mappings, however, this direct setup may be lim-
iting in some contexts. We present a novel policy
formulation composed of two components. A low-
level dynamical component, parameterized by an
autoregressive flow, models temporal dependen-
cies between actions, and a high-level component,
parameterized by a deep network, maps the cur-
rent state to a base distribution for the flow. We
provide preliminary experiments characterizing
and evaluating this class of policies on MuJoCo
continuous control tasks.

1. Introduction

Interacting with complex environments to achieve goals re-
quires learning sophisticated behavioral policies. In deep
reinforcement learning (RL) for continuous control, these
policies are parameterized by deep neural networks, map-
ping observed states to distributions over actions (Schulman
et al., 2015; Lillicrap et al., 2015). In some cases, such
policies may also contain latent variables, providing added
flexibility (Haarnoja et al., 2018a; Tirumala et al., 2019). In-
deed, in animal nervous systems, motor control is organized
hierarchically (Merel et al., 2019). One key component of
these systems are so-called central pattern generator circuits
(Marder & Bucher, 2001), low-level dynamical primitives,
which receive transient top-down signals from higher-level
motor areas (Shalit et al., 2012).

In this work, we emulate and investigate a similar process-
ing structure, separating control policies into a low-level
dynamical component, parameterized by an autoregressive
normalizing flow across time steps (Marino et al., 2020),
and a higher-level component, parameterized as a standard
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policy network. With this setup, the autoregressive flow can
learn a basis of dynamical behaviors, hopefully simplifying
learning for the policy network. We empirically characterize
these policies and investigate this approach on the MuJoCo
(Todorov et al., 2012) continuous control environments from
OpenAl gym (Brockman et al., 2016).

2. Background
2.1. Preliminaries

We consider a fully-observable Markov decision process
(MDP) defined by (S, A, penv,7,7y). At time ¢, an agent
receives a state observation s; € S and takes action a; € A
by sampling from a policy distribution, 7. The agent then
receives reward 7(s;, a;) and the environment transitions
to the next state S;11 ~ Penv(St41/St,a). With a dis-
count factor v € [0, 1), the objective is to find a policy
that maximizes the expected discounted sum of rewards,

Epep, 7 [Zt ’ytr(st ;at)].

2.2. Soft Actor Critic

We investigate our approach using soft actor critic (SAC)
(Haarnoja et al., 2018b), a state-of-the-art model-free al-
gorithm. SAC is formulated in the maximum entropy RL
framework (Ziebart, 2010; Levine, 2018), learning a pol-
icy (actor) to maximize a parameterized (Q-network (critic)
(Mnih et al., 2015). This is performed using the entropy-
augmented objective,

T
T (1) =B r | YV (r(st,21) — alogm(alsy))) | ,
t=1
(D

where « is a Lagrange multiplier controlling the entropy
weight. Rather than attempting to optimize this ob-
jective directly, SAC approximates the expected future
terms conditioned on the current action, i.e. the action-
value, defined recursively as Q. (s;,a;) = r(s¢ar) +
VB pep o [Qr (St41,141) — alogm(azy1se+1)]. The ap-
proximator, QY, is learned using temporal difference learn-
ing, with an ensemble of deep networks (Fujimoto et al.,
2018), target value networks (Mnih et al., 2015), and an
experience replay buffer (Lin, 1992).

SAC estimates the policy using a deep network, denoted 74,
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which typically takes the form of a conditional Gaussian:
Ty (arlsy) = N(at;u¢(st)7diag(0'i(st))). In MuJoCo’s
bounded action space, tanh is typically appplied to a;
(Haarnoja et al., 2018b). The policy parameters, ¢, are
optimized by backpropagating through the Q-network (and
entropy) using the reparameterization estimator (Kingma &
Welling, 2014; Rezende et al., 2014).

2.3. Normalizing Flows

Normalizing flows (Rippel & Adams, 2013; Rezende &
Mohamed, 2015; Dinh et al., 2015) transform a base dis-
tribution into a more complex distribution using invertible
transforms. Denoting the base variable as u and the trans-
formed variable as a, we can evaluate the transformed dis-
tribution using the change of variables formula:

-1

Oa

po(a) = ps(u) P (2)

Many normalizing flows employ affine transforms (Dinh
et al., 2017), i.e. a = By ©® u + &y, where 3y and dy are
parameterized using deep networks and © denotes element-
wise multiplication. Affine autoregressive flows (Kingma
et al., 2016; Papamakarios et al., 2017) are a class of affine
flow that autoregressively transforms each dimension, e.g.

aj = Bpla<y) - uj + dpla<y). 3)

Here, a; denotes the j th dimension of a, which is a function
of a<; and u;. Previous works have applied autoregressive
flows to variational inference (Kingma et al., 2016), gen-
erative modeling (Papamakarios et al., 2017; Huang et al.,
2017), and model distillation (van den Oord et al., 2018).
Recently, Marino et al. (2020) applied autoregressive flows
across time steps to perform temporal normalization in se-
quential latent variable models. We adapt this approach to
reinforcement learning policies.

Recent works have also investigated normalizing flow-based
policies. Tang & Agrawal (2018) and Ward et al. (2019) uti-
lize normalizing flows to improve policy distributions within
time steps. Likewise, Haarnoja et al. (2018a) demonstrate
the benefits of using normalizing flows to parameterize hi-
erarchical policies. We explore an orthogonal approach,
utilizing normalizing flows across time steps.

3. Autoregressive Flow-Based Policies
3.1. Motivation

In fully-observable MDPs, policy-based approaches to RL
conventionally consider policies parameterized as a direct
mapping from the current state to a distribution over actions.
However, policy optimization does not explicitly require
the current state, as any dependence is already implicitly

Figure I. Autoregressive Flow-Based Policy. To interact with an
environment (purple), penv, an autoregressive flow-based policy
converts a base distribution (blue), w4 (u¢|st), using an affine
transform (green), with affine parameters, 3¢ (a<:) and dp(a<:),
containing temporal dependencies (orange).

captured by Q- (s,a). That is, the Q-value (and entropy)
already define the optimal policy. In this sense, policy net-
works are a form of amortized optimization (Gershman &
Goodman, 2014; Marino et al., 2019). With this perspective,
we can consider other forms of amortization.

In this work, we consider policies that explicitly model tem-
poral dependencies between actions. Thus, we condition
a; on a; in addition to s;. This setup can have two main
benefits: temporal dependencies can 1) provide a basis of dy-
namical motor primitives (Ijspeert et al., 2002), simplifying
learning and control, and 2) compensate if communication
is limited, e.g. costly or delayed, between states and actions.

3.2. Formulation

We consider policies composed of a state-dependent base
distribution, 7y (u,|s;), over a latent variable, u, and a dy-
namical affine autoregressive component, defined by a shift,
dp(a<t), and scale, Byp(a<;). To generate action a;, we
sample the latent variable, u; ~ mg(us|s;), then apply the
affine transform,

a; = Bo(ac) ©ug + dp(acy). 4)
With the change of variables, the action probability is then

-1

O

Tg.0(at|se, acs) = mg(ug|se)

Hﬂe,i(aq)

2

where Sy ; is the i dimension of By. We can also apply
a final tanh transform if the action space is bounded in
[—1, 1], as in Haarnoja et al. (2018b). In our implementation,
the base distribution is a Gaussian, output by a deep net-
work with parameters ¢, and, similarly, the affine transform
parameters are output by a deep network with parameters 6.
The overall setup is shown in Figure 1.
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Figure 2. Flow-Based Policy Visualizations. Plots visualize the base distribution (top) and the affine transform (bottom) for different
dimensions of an affine autoregressive policy on Walker2d-v2. In the top plots, the solid line is the mean, and the shaded region is +
one standard deviation. In the bottom plot, the solid line is the shift, o, and the shaded region is £3¢. Black dots denote the actions, a;,
after applying the affine transform. In (a), we see that the base distribution still contains substantial dynamical structure, whereas in (b),

much of the dynamical structure is captured in the transform.

As noted by Kingma et al. (2016), if u; ~ N(us;0,1),
then the affine flow is equivalent to an autoregressive Gaus-
sian model, as Eq. 4 is the Gaussian reparameterization
trick (Kingma & Welling, 2014; Rezende et al., 2014). For
more general base distributions, this serves as a technique
for adding dependencies to output sequences, a;.p. Con-
versely, given a sequence, a;.r, the affine transform pro-
vides a mechanism for removing dependencies, simplifying
estimation in the space of uy.7 (Marino et al., 2020).

4. Experiments

We investigate sequential autoregressive flow-based poli-
cies on MuJoCo (Todorov et al., 2012) continuous control
environments from OpenAl gym (Brockman et al., 2016).
We are interested in determining 1) whether autoregressive
flow-based policies capture temporal dependencies in ac-
tions, 2) how this changes during the course of training, and
3) whether this impacts task performance. To see how this
is impacted by limitations on the base distribution policy
network, we vary the number of hidden layers in {1, 2} and
units in {32, 128, 256}. In our experiments, autoregressive
flows are conditioned on the previous 3 actions, and the
shift and scale are calculated using a network with 2 layers
of 256 units and ReLU non-linearities. We use the SAC
hyperparameters from Haarnoja et al. (2018b) elsewhere.
Section 4.1 qualitatively characterizes these policies and
Section 4.2 compares performance metrics with baseline
policies. Additional details are found in Appendix A and
the accompanying code.

4.1. Qualitative Analyses

Visualizing Flow-Based Policies We visualize autore-
gressive flow-based policies in Figure 2, plotting sub-
sequences of episodes in the Walker2d-v2 environment.
The base distribution (top) is shown alongside the affine
transform (bottom), with black dots denoting the trans-
formed actions, in this case, the base distribution mean.
We see that in some action dimensions (Fig. 2a), the base
distribution still contains substantial dynamical structure,
modulating the actions at particular time steps. In other
dimensions (Fig. 2b), however, the autoregressive flow cap-
tures much of the dynamical structure. In this latter case, the
policy’s base distribution is relatively constant throughout
and effectively unused.

Affine Scale Magnitude The scale parameter of the affine
transform, 3y, effectively controls the weighting between
the affine shift, dy, and the base distribution sample, u.
Thus, the scale parameter quantifies the degree to which
the policy is relying on the autoregressive flow. In Fig-
ure 3, we plot the average log-scale throughout training on
HalfCheetah-v2 for various base distribution network
architectures. Overall, we see an initial increase, through
150k steps, followed by a steady decrease. This signifies
an initial reliance on the base distribution, followed by an
increasing reliance on the autoregressive flow. Similar plots
for other environments are shown in Figure 5 in the Ap-
pendix. Surprisingly, the reliance on the autoregressive flow
is larger for larger base distribution network architectures.
We are still interpreting this result.
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Figure 3. Autoregressive Training. The log-scale of the affine
transform (3p) initially increases, then decreases during training,
signifying more reliance on the autoregressive component. Each
curve represents 4 seeds of a base policy architecture (number of
layers x number of units per layer) on HalfCheetah-v2.
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Figure 4. Performance Curves. Solid lines denote mean over 4
random seeds, and shaded regions denote one standard deviation.
Each curve represents one policy network architecture, with (num-
ber of layers x number of units per layer). The dashed line is the
average final performance of SAC with default policy network size
(2 x 256).

4.2. Performance Comparison

In Figure 4, we plot the performance for each policy setup,
varying the size of the base distribution network and whether
or not the policy uses autoregressive flows. We refer to the
autoregressive version of SAC as ARSAC. Each curve rep-
resents the mean and standard deviation of 4 random seeds.
The dashed black line is the average final performance of
SAC using the default (2 x 256) policy network architecture.

Overall, the results are mixed. On Hopper-v2 and
Ant-v2, autoregressive policies do not offer a clear
benefit and are slightly worse on Walker2d-v2. On

HalfCheetah-v2, we instead see a slight improvement
for ARSAC over SAC, with larger base distribution net-
works (128 vs. 32) providing improved performance in
both setups. Of particular interest, smaller policy networks
ultimately achieve the same performance as the larger de-
fault SAC policy on Hopper-v2, Walker2d-v2, and
Ant-v2. In contrast, on HalfCheetah-v2, the small
(1 x 32) policy network is not able to reach the same asymp-
totic performance as the default policy architecture. This
suggests that many of the MuJoCo continuous control tasks
are too simple to benefit from autoregressive policies, as
significantly smaller policies, i.e. base distributions, are al-
ready capable of matching the full-size baseline. We discuss
future experiments to tease apart these policy classes in the
following section.

5. Discussion

We have presented a policy formulation based on combin-
ing sequential autoregressive flows with base distribution
policy networks. This hybrid technique allows the autore-
gressive flow to model dynamical aspects of the policy,
hopefully simplifying the task for the state-action policy
network. In our preliminary investigation, we observed
that autoregressive flows do capture some policy dynamics,
with the reliance on the flow increasing throughout training.
However, we did not observe a clear performance improve-
ment across environments. We largely attribute this to the
simplicity of the MuJoCo tasks, which have determinis-
tic Markov state dynamics and, rather surprisingly, can be
solved with relatively small policy networks (1 hidden layer
with 32 units). As noted above, the only environment where
we observed a significant benefit from autoregressive poli-
cies, HalfCheetah-v2, is the same environment where
smaller policy networks did not match the asymptotic perfor-
mance of the larger default SAC policy architecture. Thus,
while the autoregressive flows are utilized in all environ-
ments, they do not offer a benefit above the already-capable
base distribution in most of the environments. Our formu-
lation does not explicitly require that the policy rely on the
autoregressive flow; it can be ignored (69 = 0, 3y = 1) if it
is unnecessary. In future experiments, we plan to investigate
autoregressive flow-based policies in settings where they
are more essential, i.e. more limited base policy networks
and more complex environments. For instance, in partially
observable environments, where estimating internal state
dynamics is essential, autoregressive policies may simplify
this task. Other possible directions include more expressive,
non-affine forms of normalizing flows (Durkan et al., 2019),
as well as multi-level flows.
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Figure 5. Affine Scale During Training for all Environments.



