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Abstract

We survey multiple recently proposed algorithms that formulate control, reinforce-
ment learning, and planning as probabilistic inference. By viewing these algorithms
through a common framework, we highlight the design choices implicit in each
setting. This framework also allows us to identify several settings that have not
yet been fully explored, and we discuss general directions for improving these
algorithms. We present a preliminary set of experiments demonstrating one such
improvement, using iterative amortized inference models (Marino et al., 2018b)
to improve policy optimization, outperforming soft actor-critic on a continuous
control task.

1 Introduction

Reinforcement learning (RL) has witnessed significant advances in recent years, largely as a result of
improved function approximation in the form of deep networks (Mnih et al., 2013; Lillicrap et al.,
2015). However, despite their success, these approaches often rely on heuristic techniques, such
as ε-greedy exploration or entropy bonuses. In search of improved techniques, recent works have
revisited the idea of framing RL as probabilistic inference (Dayan & Hinton, 1997; Attias, 2003;
Toussaint & Storkey, 2006). These approaches result in maximum entropy (Ziebart, 2010; Levine,
2018) or relative entropy (Peters et al., 2010) constraints on policies, acting to regularize and stabilize
training. Modern instantiations of these ideas, such as soft actor-critic (Haarnoja et al., 2018b) and
relative entropy regularized policy iteration (Abdolmaleki et al., 2018a), have demonstrated empirical
success. While these algorithms and others fall within the same framework, the algorithmic design
choices underlying these approaches are rarely discussed in relation to each other.

The purpose of this paper is to discuss these design choices from the perspective of variational infer-
ence (Jordan et al., 1999). Specifically, we outline the overall framework of variational expectation
maximization (Dempster et al., 1977; Neal & Hinton, 1998), stating its implications in the context of
RL. We also review a major recent advancement in variational inference, amortization (Kingma &
Welling, 2013; Rezende et al., 2014), drawing connections to RL. We hope this unified perspective
serves to guide future investigations, including comparisons of existing design choices, as well as
exploring sets of design choices that have been overlooked. As part of this process, we modify the
soft actor-critic (SAC) algorithm (Haarnoja et al., 2018b) to use iterative amortized inference (Marino
et al., 2018b), demonstrating improved performance in the continuous control domain.
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2 Background

2.1 Reinforcement Learning

We consider the standard Markov decision process (MDP) formulation, where st ∈ S and at ∈ A
are the state and action at time t, resulting in the reward rt = r(st,at). Environment state transitions
are given by st+1 ∼ penv(st+1|st,at), and the agent is defined by a parametric policy distribution,
pθ(at|st), with parameters θ. The discounted sum of rewards is denoted asR(τ) =∑t γ

trt, where
γ ∈ (0, 1] is the discount factor. Defining a trajectory as τ = (s1, a1, . . . ), the distribution over
trajectories is

p(τ) = ρ(s1)

T∏
t=1

penv(st+1|st,at)pθ(at|st), (1)

where the initial state is drawn from the distribution ρ(s1). The standard RL objective consists of
maximizing the expected discounted return, Ep(τ) [R(τ)]. In the following sections, we consider the
undiscounted setting (γ = 1), later revisiting this concept.

2.2 Variational Inference

Variational inference (Jordan et al., 1998) is an approximate inference technique that recasts prob-
abilistic inference as optimization. Consider a graphical model defined by the joint distribution
pθ(x, z) = pθ(x|z)pθ(z), with observed variable, x, latent variable, z, and parameters, θ. Often,
we are interested in 1) learning the model parameters to maximize the marginal log-likelihood of
observations, i.e. log pθ(x) = log

∫
pθ(x, z)dz, and 2) inferring the posterior distribution for a given

observation, pθ(z|x) = pθ(x, z)/pθ(x). However, evaluating pθ(x) is typically intractable. Instead,
variational inference introduces an approximate posterior, q(z|x), making use of the following:

log pθ(x) = L(x; q, θ) +DKL(q(z|x)||pθ(z|x)), (2)

where the evidence lower bound (ELBO) is defined as

L(x; q, θ) ≡ Eq [log pθ(x|z)]−DKL(q(z|x)||pθ(z)). (3)

From Eq. 2, note that L(x; q) ≤ log pθ(x) because KL-divergence is non-negative, and this bound
becomes tight when q(z|x) = pθ(z|x). Thus, for a given prior, the optimal approximate posterior is
given by the posterior distribution:

qB(z|x) = pθ(x, z)

pθ(x)
=

pθ(z) exp(log pθ(x|z))∫
pθ(z) exp(log pθ(x|z))dz

, (4)

a Boltzmann distribution, which is non-parametric. However, to avoid the intractable integration,
we can employ a parametric distribution family, such as a Gaussian, parameterizing qλ(z|x) with
distribution parameters λ, e.g. mean and variance. In either case, we have an alternating optimization
procedure, known as variational expectation maximization (EM) (Dempster et al., 1977; Neal &
Hinton, 1998). In the E-step (inference), we maximize L(x; q, θ) w.r.t. q, either estimating qB (Eq. 4)
or optimizing w.r.t. λ. In the M-step (learning), we maximize L(x; q, θ) w.r.t. θ. Both procedures
can be performed using stochastic gradients (Ranganath et al., 2014; Hoffman et al., 2013).

Inference optimization is often computationally intensive. In the parametric case, we can improve
efficiency by amortizing inference optimization, introducing a separate inference model (Dayan et al.,
1995). The inference model parameters, φ, are optimized using stochastic gradient estimators (Mnih
& Gregor, 2014; Kingma & Welling, 2013; Rezende et al., 2014). Inference models typically take
the form λ← fφ(x). However, direct models of this form tend to provide sub-optimal estimates of
λ (Cremer et al., 2018). To overcome this gap, Marino et al. (2018b) proposed iterative inference
models, which iteratively encode gradients, λ← fφ(λ,∇λL). Empirically, iterative models tend to
outperform direct models (Marino et al., 2018b,a).

3 Variational EM for RL

3.1 Set-Up

A number of works have formulated RL, planning, and control problems in terms of probabilistic
inference (Dayan & Hinton, 1997; Attias, 2003; Toussaint & Storkey, 2006; Todorov, 2008; Botvinick
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Figure 1: Graphical Representations. (a) Graphical model for formulating reinforcement learning
as probabilistic inference. Circles denote random variables, and diamonds denote deterministic
variables. Optimality is an observed variable, while all other variables are latent. (b) Corresponding
computation graph when using variational inference. Red dots denote terms in the variational
objective, J .

& Toussaint, 2012; Levine, 2018). These approaches consider the agent-environment interaction as a
graphical model, then convert reward maximization into a maximum likelihood estimation problem,
learning and inferring a policy that results in maximal reward. This conversion is accomplished by
introducing one or more binary observed variables (Cooper, 1988), denoted as O, with

p(O = 1|τ) ∝ exp
(
R(τ)/α

)
,

where α is a temperature hyper-parameter. These new variables are often referred to as “optimality”
variables (Levine, 2018). In this setting, we would like to infer latent variables, τ , and learn
parameters, θ, that yield the maximum likelihood of optimality, i.e. p(O = 1). Evaluating this
likelihood requires marginalizing the joint distribution over trajectories and optimality, p(τ,O):

p(O = 1) =

∫
p(τ,O = 1)dτ.

This corresponds to averaging over all trajectories, which is intractable in high-dimensional spaces.
Instead, we can use variational inference to lower bound this objective, introducing a structured
approximate posterior, which we denote as:

π(τ |O) =
T∏
t=1

penv(st+1|st,at)π(at|st,O). (5)

This provides the following lower bound on the objective:

log p(O = 1) = log

∫
p(O = 1|τ)p(τ)dτ

≥
∫
π(τ |O)

[
log p(O = 1|τ) + log

p(τ)

π(τ |O)

]
dτ

= Eπ[R(τ)/α]−DKL(π(τ |O)‖p(τ)).

Because we are optimizing this objective, we can multiply by α to obtain an equivalent result:

J (π, θ) = Eπ[R(τ)]− αDKL(π(τ |O)‖p(τ)) (6)

Thus, the variational objective consists of the expected return, i.e. the standard RL objective, and a
KL-divergence between π(τ |O) and p(τ). In terms of states and actions, this objective is written as:

J (π, θ) = Est,rt∼penv
at∼π

[
T∑
t=1

rt − α log
π(at|st,O)
pθ(at|st)

]
. (7)
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Algorithm 1 Variational EM for RL

1: Initialize θ
2: while θ not converged do
3: for i in {1, . . . ,M} do
4: # E-step
5: for t in {1, . . . , T} do
6: infer π(at|st,O)
7: at ∼ π(at|st,O).
8: st+1, rt ∼ penv(·|st,at)
9: end for

10: Ji :=
∑
t rt − α log π(at|st,O)

pθ(at|st)
11: end for
12: # M-step
13: θ ← θ + η∇θ 1

M

∑
i Ji

14: end while

One can also define analogous “soft” value functions for this set-up, corresponding to the expected
future objective:

Vπ(st) = Est′ ,rt′∼penv
at′∼π

[
T∑

t′=t+1

rt′ − α log
π(at′ |st′ ,O)
pθ(at′ |st′)

]
, (8)

Qπ(st,at) = rt + Est′ ,rt′∼penv
at′∼π

[
T∑

t′=t+1

rt′ − α log
π(at′ |st′ ,O)
pθ(at′ |st′)

]
. (9)

Thus,
Vπ(st) = Eπ [Qπ(st,at)]− αDKL(π(at|st,O)||pθ(at|st)). (10)

As discussed in Section 2.2, the optimal approximate posterior is a Boltzmann distribution. In the RL
setting, we denote this as πB(τ |O), with the distribution at each time step given by:

πB(at|st,O) =
pθ(at|st) exp(Qπ(st,at)/α)∫
pθ(at|st) exp(Qπ(st,at)/α)dat

. (11)

3.2 Variational EM

Applying variational EM to RL, we have an alternating optimization procedure on J (π, θ), consisting
of the following:

• E-step: infer/approximate the posterior, π(τ |O), by
– Non-Parametric: estimating πB(τ |O),
– Parametric: maximizing J w.r.t. π(τ |O).

• M-step: learn the the prior, pθ(τ), by maximizing J w.r.t. θ.

In practice, these procedures are computationally intractable, requiring various approximations. In
particular, J consists of nested expectations over penv and π, each of which can be estimated with
samples (Hoffman et al., 2013; Ranganath et al., 2014). Algorithm 1 outlines variational EM in this
sample-based setting, using a batch of M sampled trajectories to estimate∇θJ . For each sampled
trajectory, we must infer π(τ |O) (Line 7), which involves estimating the future objective, Qπ . Thus,
we see that there are three main design choices that go into any variational RL algorithm: 1) prior,
pθ(a|s), 2) approximate posterior, π(a|s,O), and 3) the conditional likelihood, i.e., value estimate,
Qπ . In addition, one can select from various hyper-parameters and optimization procedures. We now
discuss the design choices of existing algorithms from this perspective.

3.2.1 Prior

In the simplest case, the action prior is a uniform distribution over the action space. With a constant
prior probability over all actions, we can drop this term, resulting in the popular maximum entropy
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formulation of RL (Ziebart, 2010):

J (π, θ) = Eπ[R(τ)] + αH(π(τ |O)) (12)

Empirically, this tends to yield robust policies (Eysenbach & Levine, 2019) that explore the state-
space more efficiently (Fox et al., 2016). Indeed, similar techniques are often applied within standard
RL for these reasons (Mnih et al., 2016). However, the optimal max-entropy approximate posterior,
πB, is stochastic, whereas the optimal policy for a fully-observable MDP is deterministic. For this
reason, previous works tend to report performance using the maximum (MAP) of the approximate
posterior distribution (Haarnoja et al., 2018b), rather than sampling actions.

Learning the prior in the M-step can potentially improve upon the simplistic assumptions of max-
entropy RL. The prior provides a mechanism for biasing actions toward previous rewarding trajecto-
ries, enabling further refinement and generalization (Galashov et al., 2019; Teh et al., 2017). This,
again, assists in stabilizing learning, motivating methods like TRPO (Schulman et al., 2015) and
PPO (Schulman et al., 2017b). Abdolmaleki et al. (2018b) show that optimizing the prior results in
monotonic improvement in performance under certain assumptions. However, like other applications
of the variational EM algorithm, this procedure may converge to local optima. Techniques from the
optimization literature have been applied to help prevent premature convergence (Abdolmaleki et al.,
2018a; Hämäläinen et al., 2018), however, this remains an active research area.

Beyond the stabilizing benefits, a learned prior can act as a model-free rollout policy (Silver et al.,
2017), assisting in model-based policy optimization (Wang & Ba, 2019). Learning the prior also
distills model-based planning into a model-free policy (Kurutach et al., 2018; Buesing et al., 2018;
Marino & Yue, 2019), enabling efficient action selection after training.

3.2.2 Approximate Posterior

Approximate posteriors can either be parametric or non-parametric, corresponding respectively
to policy-based and value-based methods in standard RL. Multiple works have investigated non-
parametric approximate posteriors in the settings of discrete (Fox et al., 2016) and continuous
(Haarnoja et al., 2017; Abdolmaleki et al., 2018b; Piché et al., 2019) actions. Non-parametric
approximations are able to capture complex, free-form distributions. However, sampling such
distributions is difficult in continuous action spaces, accurate estimation requires drawing multiple
action samples, and their flexibility may make them prone to overfitting to value estimation errors.

Other works have opted for parametric distributions (Schulman et al., 2017a; Haarnoja et al., 2018b).
While the fixed form of continuous parametric distributions can be restrictive, e.g. Gaussian, these
approaches often perform on-par with their non-parametric counterparts (Abdolmaleki et al., 2018b,a).
Parametric distributions can be made more flexible with additional latent variables (Hausman et al.,
2018; Gupta et al., 2018; Haarnoja et al., 2018a; Tirumala et al., 2019) or normalizing flows (Tang
& Agrawal, 2018). For efficiency, parametric approximate posteriors are typically implemented
with direct amortization (Dayan et al., 1995; Kingma & Welling, 2013; Rezende et al., 2014), e.g.,
(Schulman et al., 2017a; Haarnoja et al., 2018b). However, as we show in Section 4, distribution
parameters can be optimized separately for each state.

3.2.3 Conditional Likelihood (Value Estimate)

The variational RL objective (Eq. 6) contains expectations over the approximate posterior and
environment dynamics, which we must evaluate to perform inference. However, this objective
presents a number of issues: 1) it has high variance, as it factors on multiple steps of interaction, 2) it
is generally non-differentiable, and 3) it is expensive, as it requires sampling many full trajectories
from the environment. The RL community has developed three general approaches to building
surrogate objectives: i) learning a transition model of the environment, ii) learning a parameterized
expectation function, and iii) a combination of a learned model and expectation function. These
surrogates are differentiable, can be decomposed per time step, and have a lower variance than
the original objective. However, bias in these these surrogates can reduce the accuracy of policy
optimization (inference).

Another difference is the use of the discount factor, γ. This factor does not naturally appear in the
variational RL formulation, but as noted by Schulman et al. (2017a) and others, this factor can help
reduce variance in estimates of Qπ(st,at). In practice, most implementations of variational RL
algorithms use γ < 1.
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Approximate Posterior
Parametric Non-parametric

R
L Uniform Prior

Model-Free SAC, ERPG SQL
Model-Based - SMCP

Learned Prior
Model-Free MPO, IADP, HDP MPO, RERPI, V-MPO, Distral

Model-Based - -
Table 1: Design Choices. Soft Q-Learning (SQL) (Haarnoja et al., 2017), Soft Actor-Critic (SAC)
(Haarnoja et al., 2018b), Entropy Regularized Policy Gradient (ERPG) (Schulman et al., 2017a),
Sequential Monte Carlo Planning (SMCP) (Piché et al., 2019), Maximum a Posteriori Policy Opti-
mization (MPO) (Abdolmaleki et al., 2018b), Relative Entropy Regularized Policy Iteration (RERPI)
(Abdolmaleki et al., 2018a), V-Maximum a Posterior Policy Optimization (V-MPO) (Song et al.,
2019), Information Asymmetry Default Policy (IADP) (Galashov et al., 2019), Hierarchical Default
Policy (HDP) (Tirumala et al., 2019), Distill & Transfer Learning (Distral) (Teh et al., 2017).

3.2.4 Other Design Choices

Beyond the prior, approximate posterior, and value estimate, there are a variety of other design choices
that go into any particular algorithm. For instance, we must choose the optimization algorithms used
for inference and learning, typically amortized inference and stochastic gradient descent learning.
Other design choices include the use of off-policy or on-policy interactions to estimate the objective as
well as the sampling procedure for (continuous) non-parametric approximate posteriors. For example,
soft Q-learning (Haarnoja et al., 2017) uses Stein variational gradient descent (Liu & Wang, 2016),
whereas maximium a posteriori policy optimization (MPO) (Abdolmaleki et al., 2018b) samples from
the action prior.

We summarize the main design choices of many recent algorithms in Table 12. For simplicity,
we chose to only include algorithms formulated within the variational framework, however, many
standard RL algorithms, such as A3C (Mnih et al., 2016), DDPG (Lillicrap et al., 2015), PPO
(Schulman et al., 2017b), and others could also be interpreted through this perspective. Although
Table 1 is not exhaustive, there are noticeable gaps, particularly for model-based value estimation.
Future work in model-based RL may benefit from the variational perspective, particularly with regard
to the interplay between model-based value estimation (planning) and the model-free action prior.

4 Experiments

We present initial experiments demonstrating improvements on top of a state-of-the-art algorithm, soft
actor-critic (SAC) (Haarnoja et al., 2018b,c), which uses a parametric approximate posterior, uniform
prior, and a learned conditional likelihood for inference. Specifically, we replace the direct amortized
inference procedure in SAC with an iterative amortized inference procedure (Marino et al., 2018b).
We demonstrate improved empirical performance on the HalfCheetah-v2 MuJoCo environment
from OpenAI gym (Brockman et al., 2016; Todorov et al., 2012).

4.1 Set-Up

SAC uses a direct amortized approximate posterior of the form

ut ∼ N (ut;µu, diag(σ2
u)) (13)

at = tanh(ut), (14)

where µu = µφ(st) and σu = σφ(st) are parameterized by a neural network, and the non-linearity
tanh(·) ensures that at ∈ [−1,+1]. The network parameters, φ, are trained with the reparameter-
ization gradient estimator (Kingma & Welling, 2013; Rezende et al., 2014), using another neural
network, Qψ(st,at), to estimate the Q-value. Thus, µφ(st) and σφ(st) are trained to output the
Gaussian the maximizes Qψ(st,at), subject to the action prior. We replace this direct estimation
procedure with an iterative procedure. Following Marino et al. (2018b), we use a gated update

2The methods from Schulman et al. (2017a); Galashov et al. (2019); Tirumala et al. (2019) did not provide
names for their methods. We created names for these methods for the purposes of the table.
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Figure 2: Inference Improvement. Average improvement over 10 inference iterations in (a) absolute
and (b) relative terms. Solid lines denote the average over 5 episodes in the HalfCheetah-v2
environment, with shaded regions representing one standard deviation. Improvement diminishes over
successive inference iterations, yet remains stable.

function, e.g.
µu ← ωφ � µu + (1− ωφ)� fφ(st,∇µuJ̃ ), (15)

where ωφ = ωφ(st,∇µuJ̃ ) ∈ [0, 1] is a gating function and the objective, J , is approximated as

J̃ = Eπφ [Qψ(st,at)]− αDKL(πφ(at|st,O)||pθ(at|st)). (16)

The same gating procedure is used for updating σu. Unlike the direct inference procedure, the
procedure in Eq. 15 can be run for multiple iterations. For computational efficiency and purposes
of comparison, we use 2 iterations in our experiments. We use the same architectures as Haarnoja
et al. (2018b) for all networks, with the addition of 4 · |A| inputs and outputs for the amortized
inference network, where |A| denotes the dimensionality of the action space. Inference diagrams
for direct and amortized inference are shown in Figure 3a. SAC uses a uniform action prior,
i.e. pθ(at|st) = Uniform(−1, 1). We replaced this distribution with a constant Tanh-Gaussian
distribution (Eq. 13 & 14), as we found it gave improved inference performance.

We compare the performance of SAC with these modifications on the HalfCheetah-v2 MuJoCo
environment from OpenAI gym (Brockman et al., 2016; Todorov et al., 2012). Our baseline im-
plementation is based on the version of SAC from Haarnoja et al. (2018c) and Pong (2018). Our
modifications are built on the same codebase, which will soon be made publicly available. For our
experiments, we made two changes from the original set-up of Haarnoja et al. (2018c): 1) we use a
batch size of 128 rather than 256 to improve experiment runtime, and 2) we use 200 action samples
rather than 1 to estimate Q during inference, providing low-variance estimates of∇µuJ̃ and∇σuJ̃ .
We use the procedure proposed by Haarnoja et al. (2018c) for automatically tuning α.

4.2 Results

We first demonstrate the inference optimization capabilities of iterative inference models. In Figure 2,
we plot the average performance improvement over inference iterations for an agent trained with
10 inference iterations. We plot this both in terms of absolute (Figure 2a) and relative (Figure 2b)
improvement from inference initialization. Consistent with Marino et al. (2018b,a), we see that
performance increases across inference iterations, with diminishing improvement at each iteration.

Performance results are shown in Figure 3b. Results are averaged over 5 trials for each set-up, with
shaded regions denoting one standard deviation. Iterative inference, as a drop-in replacement for
direct inference in SAC, improves performance. However, it should be noted that iterative inference
is more computationally costly, requiring additional wall-clock time. Likewise, the iterative inference
models used here contain additional inputs and outputs beyond the direct inference model (see above),
increasing the number of parameters.
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Figure 3: Inference Diagrams & Results. (a) Diagrams for direct (left) and iterative (right) amor-
tized inference in SAC. Red dots denote terms in the objective. Dotted lines denote inference compu-
tations, and red dotted lines denote inference gradients. (b) Cumulative reward on HalfCheetah-v2,
averaged over 5 trials.

5 Discussion

We have discussed a common variational EM framework that encompasses many recently proposed
algorithms. While these ideas have been in the literature for quite some time, we have attempted to
connect these ideas more closely to the terminology of variational inference, drawing connections
to concepts like amortized variational inference. By using this framing, we have shown that recent
algorithms can be interpreted as making different design choices within the same family of algorithms.
The research community should work toward quantifying the theoretical and empirical trade-offs of
these design choices. We have specifically demonstrated the viability of replacing direct amortized
inference methods with iterative inference methods.

The overall approach presented in this paper, following previous work, uses a fully-observable
environment and simplistic agent. However, the formalism of probabilistic graphical models allows
us to easily extend these components to more structured forms. This may involve incorporating
partial observability in the environment or additional latent variables within the agent (Hausman
et al., 2018; Gupta et al., 2018; Haarnoja et al., 2018a; Tirumala et al., 2019; Marino & Yue, 2019).
The variational RL perspective may be helpful in scaling algorithms to these more complex settings.
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