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Planning

We frame reinforcement learning as probabilistic inference and learning 
(Levine, 2018). This is achieved by “observing” maximum reward, then 
inferring actions that increase the likelihood of this outcome. 
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We derive the model-based reinforcement 
learning objective from the perspective of 
probabilistic inference. Comparing with 
current approaches, this objective contains 
additional terms: 

• action prior:  
• initialize planning, 
• roll-out policy, 
• consolidate model-based planning into a 

model-free policy 

• marginal log-likelihood of observations 
and reward: 
• restrict the model for task-relevance, 
• bias planning toward confident states

abstract

Lower bound                           using variational inference: 

APPROXIMATE POSTERIOR 

EVIDENCE LOWER BOUND (Discriminative Agent) 

To get a model, invert the agent’s internal state prior using Bayes’ Rule: 

EVIDENCE LOWER BOUND (Generative Agent) 

PLANNING 

set-up

Many recent works have combined latent variable models with RL (Buesing et al., 
2018; Igl et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019; Zhang et al., 
2019). In comparison, the objective here contains: 

• action prior: this facilitates consolidation of planning into a model-free policy 
(Weber et al., 2017; Nagabandi et al., 2018; Kurutach et al., 2018; Buesing et al., 
2018), acts as a roll-out policy (Silver et al., 2016), and initializes planning. 

• marginal log-likelihood of observations and reward: this restricts the internal 
state to task-relevant information during training. During planning, this appears 
in the mutual information between the internal state and inputs, biasing 
planning toward higher confidence states.
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variational inference & learning

discussion
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pa(at|a<t, zt,xt, rt)pa(zt|a<t, z<t,xt, rt)

p(O1:T |r1:T ) =
TY

t=1

p(Ot|rt)

p(Ot|rt) = Bernoulli(exp(rt)) log p(Ot = 1|rt) = log(exp(rt)) = rt

✓⇤ = argmax
✓

EO1:T⇠�(1) [log p(O1:T )] = argmax
✓

log p(O1:T = 1).✓⇤ = argmax
✓

EO1:T⇠�(1) [log p(O1:T )] = argmax
✓
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