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Abstract

Predictive coding, within theoretical neuroscience, and variational autoencoders,
within machine learning, both involve latent Gaussian models and variational
inference. While these areas share a common origin, they have evolved largely
independently. We outline connections and contrasts between these areas, using
their relationships to identify new parallels between machine learning and neuro-
science. We then discuss specific frontiers at this intersection: backpropagation,
normalizing flows, and attention, with mutual benefits for both fields.

1 Introduction

Perception has been conventionally formulated as hierarchical feature detection [52], similar to
discriminative deep networks [34]. In contrast, predictive coding [48, 14] and variational autoencoders
(VAEs) [31, 51] frame perception as a generative process, modeling data observations to learn and
infer aspects of the external environment. Specifically, both areas model observations, x, using
latent variables, z, through a probabilistic model, pθ(x, z) = pθ(x|z)pθ(z). Both areas also use
variational inference, introducing an approximate posterior, q(z|x), to infer z and learn the model
parameters, θ. These similarities are the result of a common origin, with Mumford [45], Dayan et al.
[9], and others [46] formalizing earlier ideas [59, 38]. However, since their inception, these areas
have developed largely independently. We explore their relationships (see also [58, 37]) and highlight
opportunities for the transfer of ideas. In identifying these ties, we hope to strengthen this promising,
close connection between neuroscience and machine learning, prompting further investigation.

2 Background

Predictive Coding Predictive coding [8] is a theory of thalamocortical function, in which the cortex
constructs a probabilistic generative model of sensory inputs, using approximate inference to perform
state estimation. Top-down neural projections convey predictions of lower-level activity, while
bottom-up projections convert the prediction error at each level into an updated state estimate. Such
models are often formulated with hierarchies of Gaussian distributions, with analytical non-linear
(e.g. polynomial) functions parameterizing the generative mappings [48, 14]:

pθ(z`|z`+1) = N (z`;µθ,`(z`+1),Σp,`), pθ(x|z1) = N (x;µθ,x(z1),Σx). (1)
Variational inference is performed using gradient-based optimization on the mean of q(z|x) =
N (z`;µq,`,Σq,`), yielding gradients which are linear combinations of (prediction) errors, e.g.

∇µq,1
L = Jᵀεx − ε1, (2)

where L is the objective, J = ∂µθ,x/∂µq,1 is the Jacobian, and εx and ε1 are weighted errors, i.e.
εx = Σ−1

x (x− µθ,x). Parameter learning can also be performed using gradient-based optimization.
We discuss connections between these models and neuroscience in Section 3.
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Figure 1: Computation Graphs. (a) Graphical model for the (single-level) latent variable model
underlying both predictive coding and VAEs. (b) Computation graph for predictive coding. Black
dashed lines denote inference computation (Eq. 2). (c) Computation graph for a standard VAE with
direct amortized inference. Orange dashed lines denote parameter gradients, used for learning θ and
φ. (d) Computation graph for a VAE with an example of an iterative inference model [42].

Variational Autoencoders VAEs are a class of Bayesian machine learning models, combining
latent Gaussian models with deep neural networks. They consist of an encoder network with
parameters φ, parameterizing qφ(z|x), and a decoder network, parameterizing pθ(x|z). Thus,
rather than performing gradient-based inference, VAEs amortize inference optimization with a
learned network [19], improving computational efficiency. These networks can either take a direct
form [9], e.g. µq ← NNφ(x), or an iterative form [42, 41], e.g. µq ← NNφ(µq,∇µq

L) or
µq ← NNφ(µq, εx, εz), where NNφ denotes a deep neural network. In both cases, gradients are
obtained by reparameterizing stochastic samples, z ∼ q(z|x), separating stochastic and deterministic
dependencies to enable differentiation through sampling [31, 51]. The parameters, θ and φ, are
learned using gradient-based optimization, with gradients calculated via backpropagation [54].

3 Connections, Contrasts, and Biological Correspondences

Predictive coding and VAEs are both conventionally formulated as hierarchical latent Gaussian
models, with non-linear functions parameterizing the conditional dependencies between variables.
In the case of predictive coding, these functions are often polynomials, whereas VAEs use deep
networks, which are composed of layers of linear and non-linear operations. In predictive coding,
Gaussian covariance matrices, e.g. Σx, have been treated as separate parameters, implemented
as lateral weights between units at each level [14]. A similar, but more general, mechanism was
independently developed for VAEs, known as normalizing flows [50, 30] (Section 4.2). Both areas
have been extended to sequential models. In this setting, predictive coding tends to model dynamics
explicitly, directly modeling orders of motion or generalized coordinates [15]. VAEs, in contrast, tend
to rely on less rigid forms of dynamics, often using recurrent networks, e.g. [7], though some works
have explored structured dynamics [26, 27, 40]. Both areas use gradient-based learning. In practice,
however, learning in predictive coding tends to be minimal, while VAEs use learning extensively,
scaling to large image and audio datasets, e.g. [49].

Predictive coding and VAEs both use variational inference, often setting q(z|x) as Gaussian at
each level of latent variables. Predictive coding uses errors (Eq. 2) to perform gradient-based
inference; note that this is a direct result of assuming Gaussian priors and conditional likelihood.
In contrast, VAEs use amortized inference, learning to infer. This offers a solution to the so-called
“weight transport” problem [36] for predictive coding; inference gradients require the Jacobian of the
generative model (Eq. 2), which includes the transpose of generative weight matrices. Learning a
separate set of inference weights avoids this problem, however, separate learning mechanisms are
required for these inference weights.

The benefit of identifying these connections and contrasts is that they link neuroscience, through
predictive coding and VAEs, to machine learning (and vice versa). While still under debate [2, 20],
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Figure 2: Frontiers. (a) Comparing predictive coding and VAEs, deep networks are analogous to
(ensembles of) dendrites. This suggests that similar mechanisms to backpropagation may operate
within neurons. (b) Normalizing flows can be implemented with lateral inhibitory interactions. In the
diagram, a correlated vector, v, is decorrelated to a new vector, u, simplifying the prediction space.
(c) Attention mechanisms can be implemented using the precision (inverse variance) of predictions.
Weighting prediction errors biases inference toward representing highly precise dimensions. In the
diagram, various strengths of neuromodulation, corresponding to the precision of predictions, adjust
the gain of error neurons.

biological correspondences of predictive coding have been proposed [3, 28]. Variable estimates and
errors are hypothesized to be represented by neural activity (firing rate or membrane potential). These
neurons would occur within the same cortical column, with variable neurons and error neurons in
separate cortical layers. Interneurons could mediate inversion of errors and predictions, as well as
lateral inhibition necessary for covariance matrices and attention (Section 4.3). Although many of the
biological details remain unclear, one intriguing point emerges from this analysis: deep networks
appear between variables, parameterizing the (non-linear) relationships between them. If variables
represent neural activity, then deep networks are analogous to the mappings between neurons at
separate levels in the hierarchy, i.e., dendrites. Thus, deep networks may more closely correspond
with (a parallel ensemble of) dendrites, rather than entire networks of neurons. We discuss this
implication and others in the following section.

4 Frontiers

4.1 Backpropagation & Learning

The biological correspondence of backpropagation [54] remains an open question. Backprop requires
global information, whereas biology seems to rely largely on local learning rules [24, 43, 6]. A
number of biologically-plausible formulations of backprop have been proposed [56, 33, 63, 25, 36],
attempting to reconcile this disparity and others. However, recent formulations of learning in latent
variable models [5, 35, 61] offer an alternative perspective: prediction errors at each level of the latent
hierarchy provide a local signal [14], capable of driving learning of inference and generative weights.

In Section 3, we noted that deep networks appear between each latent level, suggesting a corre-
spondence with dendrites rather than the traditional analogy as networks of neurons. This implies
the following set-up: learning across the cortical hierarchy is handled via local errors at each level,
whereas learning within the neurons at each level is mediated through a mechanism similar to
backpropagation. Indeed, looking at the literature, we see ample evidence of non-linear dendritic
computation [44] and backpropagating action potentials within neurons (Fig. 2a) [62, 32]. From this
perspective, segmented dendrites [4, 22] for top-down and bottom-up inputs to pyramidal neurons
could implement separate inference computations for errors at different levels (Eq. 2). While the
mechanisms underlying these processes remain unclear, focusing efforts on formulating biologically
plausible backpropagation from this perspective (and not supervised learning) could prove fruitful.

4.2 Normalizing Flows as Local Inhibition

We often consider factorized parametric distributions, as they enable efficient evaluation and sampling.
However, simple distributions are limiting. Normalizing flows (NFs) [53, 10, 50] provide added
complexity while maintaining tractable evaluation and sampling. They consist of a tractable base
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distribution and one or more invertible transforms. With the base distribution as pθ(u) and the
transforms as v = fθ(u), the probability pθ(v) is given by the change of variables formula:

pθ(v) = pθ(u)

∣∣∣∣det(dvdu
)∣∣∣∣−1

, (3)

where det(·) denotes matrix determinant and | · | denotes absolute value. The determinant term
corrects for the local scaling of space when moving from u to v. A popular family of transforms is
that of autoregressive affine transforms [30, 47]. One example is given by

vi = αθ(v<i) + βθ(v<i) · ui, (4)

where vi is the ith dimension of v and αθ and βθ are functions. The inverse transform (Fig. 2b) is

ui =
vi − αθ(v<i)
βθ(v<i)

, (5)

a normalization (whitening) operation. Thus, we can sample from complex distributions by starting
with simple distributions and applying local affine transforms. Conversely, we can evaluate inputs
from complex distributions by applying normalization transforms, then evaluating in a simpler space.

Local inhibition is ubiquitous in neural systems, thought to implement normalization [13]. These
circuits, modeled with subtractive and divisive operations (Eq. 5), give rise to decorrelation in retina
[21], LGN [11], and cortex [29]. NFs offer a novel description of these circuits and agree with
predictive coding. For instance, evaluating flow-based conditional likelihoods [1] involves whitening
the observations, as performed by Rao & Ballard [48], to remove low-level spatial correlations. The
same principle can be applied across time, where NFs resemble temporal derivatives [40], which are
the basis of Friston’s generalized coordinates [15]. Likewise, Friston’s proposal [14] of implementing
prior covariance matrices with lateral weights in cortex corresponds to a linear NF [30].

Local inhibition is also present in central pattern generator (CPG) circuits [39], giving rise to
correlations in muscle activation. NFs are also being explored in the context of action selection in
reinforcement learning [57, 60]. By providing a basis of correlated motor outputs, NFs improve
action selection and learning, which can take place in a less correlated space that is easier to model.
CPGs would likely be a form of inverse autoregressive flow [30] to maintain efficient sampling.

4.3 Attention via Precision Weighting

Predictive coding has proposed that prior covariance matrices, which weight prediction errors, could
implement a form of attention (Fig. 2c) [55, 16]. Intuitively, decreasing the variance of a predicted
variable pushes the model to more accurately infer and predict that variable. Biologically, this is
hypothesized to be implemented via gain modulation of error-encoding neurons, mediated through
neurotransmitters and synchronizing gamma oscillations [12]. This attentional control mechanism
could bias a model toward representing task-relevant information. Deep latent variable models have
largely ignored this functionality; when combined with active components, variances are typically
held constant, e.g. [23]. Enabling this capacity for task-dependent perceptual modulation may prove
useful or even essential in applying deep latent variable models to complex tasks.

5 Conclusion

We have identified commonalities between predictive coding and VAEs, discussing new frontiers
resulting from this perspective. Reuniting these areas may strengthen the connection between
neuroscience and machine learning. Further refining this connection could lead to mutual benefits:
neuroscience can offer inspiration for investigation in machine learning, and machine learning can
evaluate ideas on real-world datasets and environments. Indeed, despite some push back [17], if
predictive coding and related theories [18] are to become validated descriptions of the brain and
overcome their apparent generality, they will likely require the computational tools and ideas of
modern machine learning to pin down and empirically compare design choices.
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