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Abstract

This paper identifies connections between predictive coding, from theoretical neuroscience,
and variational autoencoders, from machine learning. These connections imply striking corre-
spondences for biological neural circuits, suggesting that pyramidal dendrites are functionally
analogous to non-linear deep networks and lateral inhibition is functionally analogous to normal-
izing flows. Connecting these areas provides new directions for further investigations.

1 Introduction

1.1 Cybernetics

Machine learning and theoretical neuroscience once overlapped under the field of cybernetics [Wiener,
1948, Ashby, 1956]. Within this field, perception and control, both in biological and non-biological
systems, were formulated in terms of negative feedback and feedforward processes. Briefly, negative
feedback attempts to minimize error signals by feed ing the errors back into the system, whereas
feedforward processing attempts to preemptively reduce error through prediction. At the heart of
its formulation, cybernetics formalized these techniques using probabilistic models, i.e. models that
estimate the likelihood of random outcomes, and variational calculus, a mathematical technique
for estimating functions, particularly probability distributions [Wiener, 1948]. These techniques
resulted in the first computational models of neuron function [McCulloch and Pitts, 1943], a formal
definition of information [Wiener, 1942, Shannon, 1948] (with connections to neural systems [Barlow,
1961]), and algorithms for negative feedback perception and control [MacKay, 1956, Kalman, 1960].
However, the field of cybernetics ultimately disbanded, with the new mathematical techniques and
ideas surviving in the offshoots of theoretical neuroscience, machine learning, control theory, etc.

1.2 Neuroscience & Machine Learning: Convergence & Divergence

A renewed dialogue between neuroscience and machine learning formed in the 1980s–1990s. Neurosci-
entists, bolstered by new physiological and functional analyses, began making traction in studying
neural systems in probabilistic and information theoretic terms [Laughlin, 1981, Srinivasan et al., 1982,
Barlow, 1989, Bialek et al., 1991]. In machine learning, improvements in probabilistic modeling [Pearl,
1986] and artificial neural networks [Rumelhart et al., 1986] combined with ideas from statistical
mechanics [Hopfield, 1982, Ackley et al., 1985] to yield new classes of models and training techniques.
This convergence of ideas, primarily centered around perception, resulted in new theories of neural
processing and improvements in their mathematical underpinnings.

In particular, the notion of predictive coding emerged within neuroscience [Srinivasan et al., 1982,
Rao and Ballard, 1999]. In its most general form, predictive coding postulates that neural circuits are
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Figure 1: Conceptual Evolution. Concepts emphasized by cybernetics (top left) influenced the
areas that ultimately became theoretical neuroscience and machine learning. Despite branching into
separate areas, there are shared mathematical concepts between these areas (orange dashed lines).
This paper explores the connections between predictive coding, from theoretical neuroscience, and
variational autoencoders, from machine learning.

fundamentally engaged in estimating probabilistic models of other neural activity and the surrounding
environment, with feedback and feedforward processes playing a central role. These models were
initially formulated in early sensory areas, e.g. retina [Srinivasan et al., 1982] and thalamus [Dong
and Atick, 1995], using feedforward processes to predict future neural activity. Similar notions were
also extended to higher-level sensory processing in neocortex. In a series of papers by David Mumford
[Mumford, 1991, 1992], top-down neural projections (from higher-level to lower-level sensory areas)
were hypothesized to convey hierarchical sensory predictions, whereas bottom-up neural projections
were hypothesized to convey prediction errors. Through a negative feedback process, these errors
would then update state estimates. These ideas were formalized and analyzed by Rao and Ballard
[1999], formulating a simplified artificial neural network model of images, reminiscent of a Kalman
filter [Kalman, 1960].

Feedback and feedforward processes also featured prominently in machine learning. Indeed, the
primary training algorithm for artificial neural networks, backpropagation [Rumelhart et al., 1986],
literally feeds (propagates) the output prediction errors back through the network, i.e. negative
feedback. During this period, the technique of variational inference was rediscovered within machine
learning [Hinton and Van Camp, 1993, Neal and Hinton, 1998], recasting probabilistic inference using
variational calculus. This technique proved essential in formulating the Helmholtz machine [Dayan
et al., 1995, Dayan and Hinton, 1996], a hierarchical probabilistic model parameterized by artificial
neural networks. Similar advances were made in autoregressive probabilistic models [Frey et al., 1996,
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Bengio and Bengio, 2000], using artificial neural networks to form sequential feedforward predictions,
as well as new classes of invertible probabilistic models [Parra et al., 1995, Deco and Brauer, 1995,
Bell and Sejnowski, 1997]. Unfortunately, as the chill of an “AI winter” arrived in the late 1990s,
progress in these areas slowed.

In neuroscience, these new ideas surrounding variational inference and probabilistic models
influenced predictive coding. This effort was led by Karl Friston, utilizing variational inference
[Friston, 2005] to formulate hierarchical dynamical models of neocortex [Friston, 2008a]. In line with
Mumford’s proposal [Mumford, 1992], these models contain multiple levels of variables, with each
level attempting to predict its future activity (feedforward) as well as the activity at lower levels,
closer to the input data. Through variational inference, prediction errors across levels facilitate
updating higher-level estimates (negative feedback). Such models have incorporated many aspects of
neuroscience, including local learning rules [Friston, 2005] and attention [Spratling, 2008, Feldman
and Friston, 2010, Kanai et al., 2015], and have been coarsely compared with neural circuits [Bastos
et al., 2012, Keller and Mrsic-Flogel, 2018, Walsh et al., 2020]. While predictive coding and other
forms of Bayesian brain theories have become increasingly popular [Doya et al., 2007, Friston, 2009,
Clark, 2013], empirically testing these normative models remains challenging. This is partially due
to the difficulty of distinguishing between the large number of specific design choices and the more
general theoretical claims of probabilistic learning and inference [Gershman, 2019]. Further, because
these models have been limited to simplified implementations, often without learned parameters, it
has been difficult to bridge the gap to the complexity of biological neural systems.

The AI winter thawed in the early 2010s, brought on by advances in parallel computing as well as
standardized datasets [Deng et al., 2009, Krizhevsky and Hinton, 2009] and environments [Todorov
et al., 2012, Bellemare et al., 2013]. In this new era of deep learning [LeCun et al., 2015, Schmidhuber,
2015], i.e. artificial neural networks with multiple layers, a flourishing of ideas emerged around
probabilistic modeling. Building off of previous work, more expressive classes of deep hierarchical
[Gregor et al., 2014, Mnih and Gregor, 2014, Kingma and Welling, 2014, Rezende et al., 2014],
autoregressive [Uria et al., 2014, van den Oord et al., 2016b], and invertible [Dinh et al., 2015,
2017] probabilistic models were developed. Of particular importance is a class of models known as
variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014], which bear a
close resemblance to hierarchical predictive coding models. Unfortunately, despite this similarity,
the machine learning community remains largely oblivious to the progress in predictive coding that
occurred during the AI winter (and vice versa).

1.3 Predictive Coding Meets Deep Learning

This paper aims to help bridge that divide. While the present work provides unique contributions,
many of the insights were inspired by previous works at this intersection. In particular, van den
Broeke [2016] outlines the relationship between hierarchical probabilistic models in predictive coding
and deep learning. Likewise, Lotter et al. [2017] implement basic predictive coding techniques in
deep probabilistic models, later comparing these models with neural phenomena [Lotter et al., 2018].

After establishing several common mathematical concepts (Section 2), we review the basic
formulations of the main areas of predictive coding (Section 3) and variational autoencoders (Section 4).
We then identify connections between these areas through the techniques of iterative amortization
[Marino et al., 2018b] and sequential autoregressive flows [Marino et al., 2020a]. Briefly, iterative
amortization facilitates efficiently updating estimates to minimize prediction errors, i.e. negative
feedback, whereas sequential autoregressive flows provide a feedforward mechanism for improving
predictions across time. By identifying these connections, we arrive at striking new perspectives on
the correspondences between machine learning and neuroscience. In particular, these correspondences
suggest that
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• the dendrites of pyramidal neurons are functionally analogous to deep networks,
questioning fundamental assumptions on the analogy of biological and artificial neurons [Mc-
Culloch and Pitts, 1943] and

• normalization in neural circuits is functionally analogous to normalizing flows
[Rezende and Mohamed, 2015], providing a general mathematical framework for this canonical
neural computation [Carandini and Heeger, 2012].

Like the works of van den Broeke [2016] and Lotter et al. [2017, 2018], we hope that these ideas will
inspire future research in exploring this promising direction, bringing together both fields.

2 Background

This section covers the relevant mathematical topics for this paper. It is self-contained, at the expense
of added length. Readers familiar with maximum likelihood, probabilistic models, and variational
inference may proceed to the following section.

2.1 Maximum Log-Likelihood

Consider a random variable, X ∈ RM , with a corresponding distribution, pdata(X), defining the
probability of observing each possible observation, X = x. We will use the shorthand notation
pdata(x) to denote the probability pdata(X = x). This distribution is the result of an underlying data
generation process, e.g. the emission and scattering of photons. While we do not have direct access
to pdata, we can sample observations, x ∼ pdata(x), yielding an empirical distribution, p̂data(x).

Often, we wish to model pdata, for instance, to predict or compress observations of X. We refer
to this model as pθ(x), with parameters θ. Estimating the model parameters involves maximizing
the log-likelihood of data examples under the model’s distribution:

θ∗ ← arg max
θ

Ex∼pdata(x) [log pθ(x)] . (1)

This is the maximum log-likelihood objective, which is found throughout machine learning and
probabilistic modeling [Murphy, 2012, Goodfellow et al., 2016]. In practice, we do not have access to
pdata(x) and must instead approximate the objective using data samples, i.e. using p̂data(x).

2.2 Probabilistic Models

2.2.1 Dependency Structure

Formulating a probabilistic model involves considering the dependency structure of the model and
the parameterization of these dependencies. The dependency structure of a probabilistic model is
the set of conditional dependencies between variables. One common form of dependency structure
is found in autoregressive models [Frey et al., 1996, Bengio and Bengio, 2000], which utilize the
chain rule of probability to model dependencies between variables:

pθ(x) =

M∏

j=1

pθ(xj |x<j). (2)

Here, we have induced an arbitrary ordering over the M dimensions of x, allowing us to factor the joint
distribution over dimensions, pθ(x), into a product of M conditional distributions, each conditioned
on the previous dimensions, x<j . Slightly abusing notation, at j = 1, we have pθ(xj |x<j) = pθ(x1).
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Figure 2: Dependency Structures. Each diagram shows a (directed) graphical model, with nodes
representing random variables and arrows representing probabilistic dependencies. The two main
forms of probabilistic dependency structure are autoregressive (left; Eq. 2) and latent variable models
(center; Eq. 4). These structures can be combined (right; Eq. 8) to further improve model capacity.

A natural use-case for this dependency structure arises in modeling sequential data, where time
provides an ordering over a sequence of T observed variables, x1:T :

pθ(x1:T ) =

T∏

t=1

pθ(xt|x<t). (3)

Although such models are conventionally formulated in forward temporal order, this is truly a
modeling assumption. Likewise, while the chain rule of probability dictates that we must consider all
previous variables, there may be cases where it is safe to assume conditional independence outside of
some window. In the extreme case, in which we only consider pairwise dependencies, we arrive at a
Markov chain: pθ(x1:T ) =

∏T
t=1 pθ(xt|xt−1).

Autoregressive models are also referred to as “fully-visible” models [Frey et al., 1996], as depen-
dencies are only explicitly modeled between observed variables. However, we can also model such
dependencies by introducing latent variables, denoted as Z. Formally, a latent variable model is
defined by the joint distribution

pθ(x, z) = pθ(x|z)pθ(z), (4)

where pθ(x|z) is the conditional likelihood and pθ(z) is the prior. Again, we have used the shorthand
notation pθ(x, z) to denote pθ(X = x, Z = z). Introducing latent variables is one of, if not, the
primary technique for increasing the flexibility of a probabilistic model. This is because evaluating
the probability of an observation now requires marginalizing over the latent variables. If Z is a
continuous variable, this involves integration, pθ(x) =

∫
pθ(x, z)dz, and if Z is discrete, this involves

summation, pθ(x) =
∑

z pθ(x, z). In either case, we have

pθ(x) = Ez∼pθ(z) [pθ(x|z)] , (5)

which illustrates that pθ(x) is a mixture distribution, with each mixture component, pθ(x|z), weighted
according to pθ(z). Thus, even when restricting pθ(x|z) to simple distribution forms, such as Gaussian
distributions, pθ(x) can take on flexible forms that do not have closed form analytical expressions.
In this way, Z can implicitly model dependencies in X, assigning higher probability to particular
regions of the observation space.
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However, increasing flexibility through latent variables comes with increasing computational
overhead. In general, marginalizing over Z is not analytically tractable. This requires us to either
1) adopt approximation techniques, which we discuss in Section 2.3, or 2) restrict the form of the
model to ensure computationally tractable evaluation of pθ(x). This latter approach is the basis of
flow-based models [Tabak and Turner, 2013, Rippel and Adams, 2013, Dinh et al., 2015], which
define the conditional dependency between X and Z in terms of an invertible transform, x = fθ(z)
and z = f−1θ (x). With a prior or base distribution, pθ(z), we can then express pθ(x) using the change
of variables formula:

pθ(x) = pθ(z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣
−1
, (6)

where ∂x
∂z is the Jacobian of the transform and det(·) denotes matrix determinant. The term∣∣det

(
∂x
∂z

)∣∣−1 can be interpreted as the local scaling of space when moving from Z to X, conserving
probability mass in the transform. Flow-based models, also referred to as normalizing flows [Rezende
and Mohamed, 2015], are the basis of independent components analysis (ICA) [Bell and Sejnowski,
1997, Hyvärinen and Oja, 2000] and non-linear generalizations [Chen and Gopinath, 2001, Laparra
et al., 2011]. As such, these models can serve as a general-purpose mechanism for adding and removing
statistical dependencies between variables. Although flow-based models avoid the intractability of
marginalization, their requirement of invertibility may be overly restrictive or undesirable in some
contexts [Cornish et al., 2020]. And while the change of variables formula can also be applied to
non-invertible transforms [Cvitkovic and Koliander, 2019], it raises computational intractabilities.

We have presented autoregression and latent variables separately, however, these techniques
can, in fact, be combined in numerous ways to model dependencies. For instance, one can create
hierarchical latent variable models [Dayan et al., 1995], incorporating autoregressive dependencies
between latent variables. Considering L levels of latent variables, Z1:L =

[
Z1, . . . , ZL

]
, we can

express the joint distribution as

pθ(x, z
1:L) = pθ(x|z1:L)

L∏

`=1

pθ(z
`|z`+1:L). (7)

Hierarchical latent variable models are a repeated application of the latent variables technique in
order to create increasingly complex empirical priors [Efron and Morris, 1973]. We can also consider
incorporating latent variables within sequential (autoregressive) probabilistic models, giving rise to
sequential latent variable models. Considering a single level of latent variables in a corresponding
sequence, Z1:T , we have the following joint distribution:

pθ(x1:T , z1:T ) =

T∏

t=1

pθ(xt|x<t, z≤t)pθ(zt|x<t, z<t), (8)

where we have again assumed a forward sequential ordering. This formulation encompasses special
cases, such as hidden Markov models or linear Gaussian state-space models [Murphy, 2012]. Beyond
hierarchical and sequential latent variable models, there are a variety of other ways to combine
autoregression and latent variables [Gulrajani et al., 2017, Razavi et al., 2019].

2.2.2 Parameterizing the Model

The probability distributions that define probabilistic dependencies are ultimately functions. In this
section, we discuss forms that these functions may take, restricting our focus here to parametric
distributions, which are defined by one or more distribution parameters. The canonical example is
the Gaussian (or Normal) distribution, N (x;µ, σ2), which is defined by a mean, µ, and variance, σ2.
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This can be extended to the multivariate setting, where x ∈ RM is modeled with a mean vector, µ,
and covariance matrix, Σ, with the probability density written as

N (x;µ,Σ) =
1

(2π)M/2 det(Σ)1/2
exp

(−1

2
(x− µ)ᵀΣ−1(x− µ)

)
. (9)

For convenience, we may also consider diagonal covariance matrices, Σ = diag(σ2), simplifying
the parameterization and resulting calculations. In particular, the special case where Σ = IM , the
M ×M identity matrix, the log-density, up to a constant, becomes the familiar mean squared error,

logN (x;µ, I) = −1

2
||x− µ||22 + const. (10)

With a parametric distribution, conditional dependencies are mediated by the distribution param-
eters, which are functions of the conditioning variables. For example, we can express an autoregressive
Gaussian distribution (Eq. 2) through conditional densities, pθ(xj |x<j) = N (xj ;µθ(x<j), σ

2
θ(x<j)),

where µθ and σ2
θ are functions taking x<j as input. A similar form applies to autoregressive

models on sequences of vector inputs (Eq. 3), with pθ(xt|x<t) = N (xt;µθ(x<t),Σθ(x<t)). Like-
wise, in a latent variable model (Eq. 4), we can express a Gaussian conditional likelihood as
pθ(x|z) = N (x;µθ(z),Σθ(z)). In the above examples, we have overloaded notation, using a subscript
θ for all functions, however, these may be separate functions in practice.

The functions supplying each of the distribution parameters can range in complexity, from constant
to highly non-linear. Classical modeling techniques often employ linear functions. For instance, in a
latent variable model, we could parameterize the mean as a linear function of z:

µθ(z) = Wz + b (11)

where W is a matrix of weights and b is a bias vector. Models of this form underlie factor analysis,
probabilistic principal components analysis [Tipping and Bishop, 1999], independent components
analysis [Bell and Sejnowski, 1997, Hyvärinen and Oja, 2000], and sparse coding [Olshausen and
Field, 1996]. Linear autoregressive models are also the basis of many classical time-series models.
While linear models are relatively computationally efficient, they are often too limited to accurately
model complex data distributions, e.g. those found in natural images or audio.

Recent improvements in deep learning [Goodfellow et al., 2016] have provided probabilistic models
with expressive classes of non-linear functions, improving their capacity. In these models, the distri-
bution parameters are parameterized with deep networks, which are then trained by backpropagating
[Rumelhart et al., 1986] the gradient of the log-likelihood objective, ∇θEx∼p̂data [log pθ(x)], back
through the network. Deep autoregressive models and deep latent variable models have enabled recent
advances in speech [Graves, 2013, van den Oord et al., 2016a], natural language [Sutskever et al.,
2014, Radford et al., 2019], images [Razavi et al., 2019], video [Kumar et al., 2020], reinforcement
learning [Chua et al., 2018, Ha and Schmidhuber, 2018] and many other areas.

We visualize a probabilistic computation graph for a deep autoregressive model in Figure 3.
This diagram breaks the variables into their associated distributions and terms in the log-likelihood
objective. Here, green circles denote the conditional likelihood at each step, containing a Gaussian
mean and standard deviation, which are parameterized by a deep network. The log-likelihood,
log pθ(xt|x<t), evaluated at the data observation, xt ∼ pdata(xt|x<t) (gray circle), provides the
objective (red dot). The gradient of this objective w.r.t. the network parameters is calculated through
backpropagation (red dotted line).

Autoregressive models (without latent variables) have proven useful in many domains, often
obtaining better log-likelihoods as compared with latent variable models. However, there are a
number of reasons to prefer latent variable models in some contexts. First, autoregressive sampling
is inherently sequential, and this linear computational scaling becomes costly in high-dimensional
domains. Second, latent variables provide a representational space for downstream tasks, compression,
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Figure 3: Model Parameterization & Computation Graph. The diagram depicts a simplified
computation graph for a deep autoregressive Gaussian model. Green circles denote the conditional
likelihood distribution at each step, while gray circles again denote the (distribution of) data
observations. Smaller red circles denote each of the log-likelihood terms in the objective. Gradients
w.r.t. these terms are backpropagated through the networks parameterizing the model’s distribution
parameters (red dotted lines).

and overall data analysis. Finally, latent variables provide added flexibility, which is particularly
useful for modeling continuous random variables with relatively simple, e.g. Gaussian, conditional
distributions. For these reasons, we require methods for handling the latent marginalization in Eq. 5.
Variational inference is one such method.

2.3 Variational Inference

Training latent variable models through maximum likelihood requires evaluating log pθ(x). However,
evaluating pθ(x) =

∫
pθ(x, z)dz is generally computationally intractable. This problem is only

exacerbated in deep latent variable models, where computing pθ(z) and pθ(x|z) is more expensive.
Thus, we require some technique for tractably estimating log pθ(x). Variational inference [Hinton
and Van Camp, 1993, Jordan et al., 1998] approaches this problem by introducing an approximate
posterior distribution, q(z|x), which provides a tractable lower bound, L(x; q, θ) ≤ log pθ(x), on the
log-likelihood. This lower bound is referred to as the evidence lower bound (ELBO), variational lower
bound, and the negative free energy. By tightening and maximizing the ELBO w.r.t. the model
parameters, θ, we can approximate maximum likelihood training while avoiding marginalization.

Variational inference converts probabilistic inference into an optimization problem. Given a family
of distributions, Q, e.g. Gaussian, non-parametric, etc., variational inference attempts to find the
distribution, q ∈ Q, that minimizes DKL(q(z|x)||pθ(z|x)):

q(z|x)← arg min
q
DKL(q(z|x)||pθ(z|x)), (12)

where pθ(z|x) is the posterior distribution, pθ(z|x) = pθ(x,z)
pθ(x)

. Because pθ(z|x) includes the intractable
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Figure 4: ELBO Computation Graphs. (a) Basic computation graph for variational inference.
Outlined circles denote distributions. Smaller red circles denote terms in the ELBO objective. Arrows,
again, denote conditional dependencies. This notation can be used to express (b) hierarchical and
(c) sequential models with various model dependencies.

pθ(x), we cannot minimize the KL divergence in Eq. 12 directly. Instead, we can rewrite this as

DKL(q(z|x)||pθ(z|x)) = Ez∼q(z|x) [log q(z|x)− log pθ(z|x)] (13)

= Ez∼q(z|x)

[
log q(z|x)− log

(
pθ(x, z)

pθ(x)

)]
(14)

= Ez∼q(z|x) [log q(z|x)− log pθ(x, z)] + log pθ(x) (15)

= −L(x; q, θ) + log pθ(x). (16)

In Eq. 16, we have defined L(x; q, θ), as

L(x; q, θ) ≡ Ez∼q(z|x) [log pθ(x, z)− log q(z|x)]

= Ez∼q(z|x) [log pθ(x|z)]−DKL(q(z|x)||pθ(z)).

(17)

(18)

Rearranging terms in Eq. 16, we have

log pθ(x) = L(x; q, θ) +DKL(q(z|x)||pθ(z|x)). (19)

Because KL divergence is non-negative, L(x; q, θ) ≤ log pθ(x), with equality when q(z|x) = pθ(z|x).
As the LHS of Eq. 19 does not depend on q(z|x), maximizing L(x; q, θ) w.r.t. q implicitly minimizes
DKL(q(z|x)||pθ(z|x)) w.r.t. q. Together, these statements imply that maximizing L(x; q, θ) w.r.t. q
tightens the lower bound on log pθ(x). With this tightened lower bound, we can then maximize
L(x; q, θ) w.r.t. θ. This alternating optimization process is referred to as the variational expecta-
tion maximization (EM) algorithm [Dempster et al., 1977, Neal and Hinton, 1998], consisting of
approximate inference (E-step) and learning (M-step).

As with autoregressive models, we can represent latent variable models and the ELBO objective as
a computation graph. In Figure 4, we illustrate examples of these graphs. Each variable contains a red
circle, denoting a term in the ELBO objective. In comparison with the fully-observed autoregressive
model, we now have an additional objective term for the latent variable, corresponding to the KL
divergence. This graphical representation also allows us to visualize the variational objective for
more complex hierarchical and sequential models (Figures 4b & 4c).
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3 Predictive Coding

Predictive coding, as described within neuroscience, can be divided into two distinct settings, spa-
tiotemporal and hierarchical, roughly corresponding to the two main forms of structured probabilistic
dependencies. In this section, we review each of these settings, discussing previously hypothesized
correspondences with neural anatomy. Finally, we outline the current empirical support for predictive
coding in neural systems, highlighting the need for large-scale, testable models.

3.1 Spatiotemporal Predictive Coding

Spatiotemporal predictive coding [Srinivasan et al., 1982], as the name implies, involves forming
predictions across spatial dimensions and temporal sequences. These predictions then produce
the resulting “code” as the prediction error. Concretely, in the temporal setting, we can consider
a Gaussian autoregressive model, pθ, defined over observation sequences, x1:T . The conditional
probability at time t can be written as

pθ(xt|x<t) = N (xt;µθ(x<t),diag(σ2
θ(x<t))).

Introducing auxiliary variables, yt ∼ N (0, I), we can use the reparameterization trick to express
xt = µθ(x<t) + σθ(x<t) � yt, where � denotes element-wise multiplication. Conversely, we can
express the inverse, normalization or whitening transform as

yt =
xt − µθ(x<t)
σθ(x<t)

. (20)

An example of temporal normalization with video, adapted from Marino et al. [2020a], is shown
in Figure 5b. Note that one special case of this transform involves setting µθ(x<t) ≡ xt−1 and
σθ(x<t) ≡ 1, in which case, yt = xt − xt−1, i.e. temporal differences. For sequences that change
slowly relative to the temporal step-size, this is a reasonable assumption. This inverse transform
can remove temporal redundancy in the input sequence. Thus, by Shannon’s source coding theorem
[Shannon, 1948], we can encode or compress y1:T more efficiently than x1:T . The benefit of this
sequential predictive coding scheme was recognized in the early days of information theory [Harrison,
1952, Oliver, 1952], forming the basis of modern video [Wiegand et al., 2003] and audio [Atal and
Schroeder, 1979] compression.

A similar process can also be applied within xt to remove spatial dependencies. For instance,
we could also apply an autoregressive affine transform over spatial dimensions, predicting the ith

dimension, xi,t, as a function of previous spatial dimensions, x1:i,t. With linear functions, this
corresponds to Cholesky whitening [Pourahmadi, 2011, Kingma et al., 2016]. However, this requires
imposing an arbitrary ordering over spatial dimensions. Perhaps a more reasonable approach in the
spatial setting is to learn a set of symmetric dependencies between dimensions. Here, the linear case
corresponds to ZCA whitening [Kessy et al., 2018], shown in Figure 5a. In the natural image domain,
both of these whitening schemes generally result in center-surround spatial filters, extracting edges
from the input.

Srinivasan et al. [1982] investigated the principles of spatiotemporal predictive coding in the
retina, where compression is essential for transmission through the optic nerve. Estimating the auto-
correlation function of input sensory signals, i.e. a linear prediction, they showed that spatiotemporal
predictive coding provides a reasonable fit to retinal ganglion cell recordings from flies, allowing
the retina’s output neurons to more fully utilize their dynamic range. It is now generally accepted
that retina, in part, performs stages of spatial and temporal normalization through center-surround
receptive fields and on-off responses [Hosoya et al., 2005, Graham et al., 2006, Pitkow and Meister,
2012, Palmer et al., 2015]. Dong and Atick [1995] applied similar predictive coding ideas to the
thalamus, proposing an additional stage of temporal normalization. Likewise, Friston’s use of
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(b) Temporal

Figure 5: Spatiotemporal Predictive Coding. (a) Spatial predictive coding models remove
spatial dependencies. In the domain of natural images, one version of linear predictive coding is
ZCA whitening, which yields center-surround filters (left). As a result, the whitened image contains
highlighted edges (right). (b) Temporal predictive coding models remove temporal dependencies. In
the domain of natural video, this tends to remove static backgrounds. Images are from the BAIR
Robot Pushing dataset [Ebert et al., 2017].

generalized coordinates [Friston, 2008a], i.e. modeling multiple orders of temporal derivatives, can be
approximated using finite temporal differences through repeated application of predictive coding.
That is, dxdt ≈ ∆xt ≡ xt − xt−1. Thus, spatiotemporal predictive coding may be utilized at multiple
stages of sensory processing to remove redundancy [Huang and Rao, 2011].

In neural circuits, spatiotemporal normalization often involves inhibitory interneurons [Carandini
and Heeger, 2012], carrying out operations similar to those in Eq. 20 (though other mechanisms
are also possible). For instance, retinal inhibitory interactions take place between photoreceptors,
via horizontal cells, and between bipolar cells, via amacrine cells. This enables unpredicted motion
to be computed, e.g. an object moving relative to the background, using inhibitory interactions
from amacrine cells [Ölveczky et al., 2003, Baccus et al., 2008]. Similar inhibitory interactions
are present in the lateral geniculate nucleus (LGN) in thalamus, with interneurons inhibiting relay
cells originating from retina [Sherman and Guillery, 2002]. As mentioned above, this is thought
to implement a form of temporal normalization [Dong and Atick, 1995], removing, at least, linear
dependencies [Dan et al., 1996]. Inhibition via lateral inhibitory interactions is also a prominent
feature of neocortex, with distinct classes of local interneurons playing a significant role in shaping
the responses of principal pyramidal neurons [Isaacson and Scanziani, 2011]. While these distinct
classes may serve separate computational roles, part of this purpose appears to be for spatiotemporal
normalization [Carandini and Heeger, 2012]. Finally, while we have focused largely on early stages of
sensory processing, inhibitory interneurons are also prevalent in other areas of neocortex, as well
as in central pattern generator (CPG) circuits [Marder and Bucher, 2001], found in the spinal cord.
These circuits are repsonsible for the rhythmic generation of movement, such as locomotion. Thus,
just as inhibitory interactions remove spatiotemporal dependencies in early sensory areas, similar
computational operations can add spatiotemporal dependencies in motor activation.

3.2 Hierarchical Predictive Coding

The other main form of predictive coding, mathematically formulated by Rao and Ballard [1999],
Friston [2005], involves hierarchies of latent variables and, as such, has been postulated as a model
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Figure 6: Brain Anatomy & Cortical Circuitry. Left: Sensory inputs enter first-order relays
in thalamus from sensory organs. Thalamus forms reciprocal connections with neocortex. Neocortex
consists of hierarchies of cortical areas, with both forward and backward connections. Right:
Neocortex is composed of six layers (I–VI), with specific neuron classes and connections at each layer.
The simplified schematic depicts two cortical columns. Black and red circles represent excitatory and
inhibitory neurons respectively, with arrows denoting major connections. This basic circuit motif is
repeated with slight variations throughout neocortex.

of hierarchical cortical processing. The neocortex (Figure 6) is a sheet-like structure involved in
many aspects of sensory and motor processing. It is composed of six layers (I–VI), containing
particular classes of neurons and connections. Across layers, neurons are arranged into columns,
which are engaged in related computations [Mountcastle et al., 1955]. Columns interact locally
via inhibitory interactions from interneurons while also forming processing hierarchies through
longer-range excitatory interactions from pyramidal neurons. Particularly in earlier sensory areas,
longer-range connections are generally grouped into forward (up the hierarchy) and backward (down
the hierarchy) directions. Forward connections are traditionally thought to be driving (evoking neural
activity) [Girard and Bullier, 1989, Girard et al., 1991]. Backward connections are traditionally
thought to be modulatory, however, they have also been shown be driving [Covic and Sherman, 2011,
De Pasquale and Sherman, 2011], which can be inverted through inhibition [Meyer et al., 2011]. These
sets of connections, repeated with slight variations throughout neocortex, constitute a canonical
neocortical microcircuit [Douglas et al., 1989], which could suggest a single processing algorithm
[Hawkins and Blakeslee, 2004], capable of adapting to a variety of inputs [Sharma et al., 2000].

In formulating a theory of neocortex, Mumford [1992] proposed that thalamus acts as an ‘active
blackboard,’ with the cortical hierarchy attempting to reconstruct or predict the thalamic input
and activity in areas throughout the hierarchy. Backward (top-down) projections would convey
predictions, while forward (bottom-up) projections would use prediction errors to update the estimates
throughout the hierarchy. Through a dynamic process of activation, the entire system would settle
to a consistent pattern of activity, minimizing prediction error. Over longer periods of time, the
model parameters would be adjusted to yield improved predictions. In this way, cortex would use
negative feedback, both in inference and learning, to use and construct a generative model of its
inputs. This notion of generative state estimation dates back (at least) to Helmholtz [Von Helmholtz,
1867], and the notion of correcting predictions based on prediction errors is inline with concepts
from cybernetics [Wiener, 1948, MacKay, 1956], which influenced techniques like Kalman filtering
[Kalman, 1960], a ubiquitous Bayesian filtering algorithm.

A more complete mathematical formulation of this hierarchical predictive coding model, with
many similarities to Kalman filtering (see Rao [1998]), was provided by Rao and Ballard [1999], with
the generalization to variational inference provided by Friston [2005]. To illustrate this setup, consider
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a simple model consisting of a single level of continuous latent variables, z, modeling continuous data
observations, x. We will use Gaussian densities for each distribution and assume we have

pθ(x|z) = N (x; f(Wz),diag(σ2
x)), (21)

pθ(z) = N (z;µz,diag(σ2
z)), (22)

where f is an element-wise function (e.g. logistic sigmoid, tanh, or the identity), W is a weight
matrix, µz is the constant prior mean, and σ2

x and σ2
z are constant vectors of variances.

In the simplest approach to inference, we can find the maximum-a-posteriori (MAP) estimate,
i.e. estimate the z∗ which maximizes pθ(z|x). While we cannot tractably evaluate pθ(z|x) directly,
we can use Bayes’ rule to write

z∗ = arg max
z
pθ(z|x)

= arg max
z

pθ(x, z)

pθ(x)

= arg max
z
pθ(x, z).

Thus, rather than evaluating the posterior distribution, pθ(z|x), we can perform this maximization
using the joint distribution, pθ(x, z) = pθ(x|z)pθ(z), which we can tractably evaluate. We can
also replace the optimization over the probability distribution with an optimization over the log
probability, since log(·) is a monotonically increasing function and will not affect the optimization.
We then have

z∗ = arg max
z

[log pθ(x|z) + log pθ(z)] .

= arg max
z

[
logN (x; f(Wz),diag(σ2

x)) + logN (z;µz,diag(σ2
z))
]
.

Each of the terms in this objective is a weighted squared error. For instance, the first term is the
weighted squared error in reconstructing the data observation:

logN (x; f(Wz),diag(σ2
x)) =

−M
2

log(2π)− 1

2
log det

(
diag(σ2

x)
)
− 1

2

∣∣∣∣
∣∣∣∣
x− f(Wz)

σx

∣∣∣∣
∣∣∣∣
2

2

,

where M is the dimensionality of x and || · ||22 denotes the squared L2 norm. Plugging these terms
into the objective and dropping terms that do not depend on z yields

z∗ = arg max
z

[
−1

2

∣∣∣∣
∣∣∣∣
x− f(Wz)

σx

∣∣∣∣
∣∣∣∣
2

2

− 1

2

∣∣∣∣
∣∣∣∣
z− µz

σz

∣∣∣∣
∣∣∣∣
2

2

]
, (23)

= arg max
z

L (z; θ),

where we have defined the objective as L (z; θ). For purposes of illustration, let us assume that f(·)
is the identity function, i.e. f(Wz) = Wz. We can then evaluate the gradient of L (z; θ) w.r.t. z,
yielding

∇zL (z; θ) = Wᵀ
(

x−Wz

σx

)
− z− µz

σz
.

The transposed weight matrix, Wᵀ, comes from differentiating Wz, and translates the error in
reconstruction into an update in z. If we define the following terms as weighted errors:
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Figure 7: Hierarchical Predictive Coding. The diagram shows the basic computation graph for
a Gaussian latent variable model with MAP inference. The insets show the weighted error calculation
for the latent (left) and observed (right) variables.

ξx ≡
x−Wz

σx
,

ξz ≡
z− µz

σz
,

then we can re-write the gradient using these terms:

∇zL (z; θ) = Wᵀξx − ξz. (24)

Thus, if we want to perform inference using gradient-based optimization, e.g. z← z + α∇zL (z; θ),
we need 1) the weighted errors, ξx and ξz, and 2) the transposed weights, Wᵀ, or more generally,
the Jacobian of the conditional likelihood mean. This overall scheme is depicted in Figure 7.

To learn the weight parameters, we can differentiate L (z; θ) (Eq. 23) w.r.t. W:

∇WL (z; θ) =

(
x−Wz

σx

)
zᵀ

= ξxzᵀ.

This gradient is the product of a local error term, ξx, and the latent variable, z, possibly suggesting
a biologically-plausible learning rule [Whittington and Bogacz, 2017].

Predictive coding identifies the conditional likelihood (Eq. 21) with backward (or top-down)
cortical projections, whereas inference updating (Eq. 24) is identified with forward (or bottom-up)
cortical projections [Friston, 2005]. Such connections are thought to be mediated by pyramidal
neurons. Scaling this model up in size and structure, each cortical column could contain the necessary
computational elements involved in predicting and estimating a latent variable. Interneurons within
columns could be involved in error calculation (ξx and ξz). Although we only discussed diagonal
covariance matrices (σ2

x and σ2
z), interneurons involved in local lateral inhibition could parameterize

(the inverse of) full covariance matrices, i.e. Σx and Σz. This is an instance of spatial predictive
coding, which we discussed in the previous section. Note that these factors, which weight ξx and ξz,
effectively modulate the gain of each error term, possibly providing a form of “attention” [Feldman
and Friston, 2010]. Possible neural correspondences are summarized in Table 1.

Here, we have discussed a simplified model of hierarchical predictive coding, with a single latent
level and no dynamics. However, a full theory of hierarchical predictive coding would include these
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Table 1: Proposed Neural Correspondences of Hierarchical Predictive Coding.

Neuroscience Predictive Coding

Top-Down Cortical Projections Generative Model Conditional Mapping
Bottom-Up Cortical Projections Inference Updating

Lateral Inhibition Covariance Matrices
(Pyramidal) Neuron Activity Latent Variable Estimates & Errors

Cortical Column Corresponding Estimate & Error

additional aspects and others. Karl Friston has explored various design choices throughout multiple
papers [Friston et al., 2007, Friston, 2008a,b], yet the core aspects of probabilistic generative modeling
and variational inference remain largely the same. Further elaborating and comparing these design
choices will be essential for empirically validating the details of hierarchical predictive coding.

3.3 Empirical Support

Empirically validating predictive coding in neural circuits is an active area of research. This remains
challenging, as it is difficult to disentangle the theory itself from the wide array of possible design
choices, e.g. distributions, parameterizations, etc. [Gershman, 2019]. Nevertheless, many of the core
aspects of predictive coding do appear to have some empirical support. We briefly outline some of
these studies here, but we refer the reader to the multiple review papers on the topic [Huang and
Rao, 2011, Bastos et al., 2012, Clark, 2013, Keller and Mrsic-Flogel, 2018, Walsh et al., 2020].

Spatiotemporal As discussed above, various works have investigated spatiotemporal predictive
coding in early sensory areas, primarily retina [Srinivasan et al., 1982, Atick and Redlich, 1992]. This
typically involves fitting retinal ganglion cell responses to a spatial whitening (or decorrelation) process
[Graham et al., 2006, Pitkow and Meister, 2012], which is dynamically adjusted based on lighting
conditions [Hosoya et al., 2005]. Similar analyses suggest that retina employs temporal predictive
coding as well [Srinivasan et al., 1982, Palmer et al., 2015]. While the exact mathematical details
of these neural computations have not been fully characterized, the corresponding models contain
stages of linear decorrelating filters (e.g. center-surround) followed by non-linearities. Importantly,
non-linearities have been shown to be an essential aspect in explaining retinal ganglion cell responses
[Pitkow and Meister, 2012], possibly inducing an added degree of sparsity [Graham et al., 2006]. As
previously noted, similar spatiotemporal predictive coding computations may be found in thalamus
[Dong and Atick, 1995] and cortex. While Dan et al. [1996] provide some supporting evidence, such
investigations are complicated by the presence of backward and modulatory interactions.

Hierarchical Early work toward empirically validating hierarchical predictive coding came from
explaining extra-classical receptive field effects [Rao and Ballard, 1999, Rao and Sejnowski, 2002],
whereby top-down processing in cortex can alter classical visual receptive fields, suggesting that
top-down influences play an important role in sensory processing [Gilbert and Sigman, 2007]. Likewise,
temporal influences have been demonstrated in the form of repetition suppression [Summerfield et al.,
2006], in which cortical activity diminishes in response to repeated, i.e. predictable, stimuli. This
effect may reflect the suppression of errors through improved predictions. Predictive coding has
also been postulated as an explanation of biphasic responses in LGN [Jehee and Ballard, 2009], in
which reversing the visual input with an anti-correlated image results in a large neural response,
presumably due to prediction errors. Predictive signals have been documented in auditory [Wacongne
et al., 2011] and visual [Meyer and Olson, 2011] processing. Activity seemingly corresponding to
prediction errors has also been observed in a variety of areas and contexts, including visual flow
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in primary visual cortex in mice [Keller et al., 2012, Zmarz and Keller, 2016], auditory cortex in
monkeys [Eliades and Wang, 2008] and rodents [Parras et al., 2017], and visual cortex in humans
[Murray et al., 2002, Alink et al., 2010, Egner et al., 2010]. While further studies are needed, it
appears that sensory cortex is engaged in some form of hierarchical and temporal prediction, with
prediction error signals playing a key role in driving the perceptual process.

The empirical evidence for spatiotemporal and hierarchical predictive coding is suggestive, but
given the complexity of neural systems, some aspects of the theory are undoubtedly incorrect,
incomplete, or under-specified. In particular, the complexity of biological systems makes it is
difficult to isolate and assess detailed aspects of predictive coding. For instance, it appears that
cortex calculates some form of prediction error, but without access to fine-grained recordings of
all relevant signals, e.g. dendritic currents, neuromodulators, etc., it is difficult to determine the
exact computational form of the circuit. Thus, while general aspects of predictive coding appear
supported, we are unable to probe into the details of such models, making predictive coding a largely
normative theory. The purpose of this paper is to establish connections between predictive coding
and machine learning. Ideally, by building larger-scale models and training them on similar sensory
data, we can form more fine-grained empirical predictions for biological neural systems. Building off
of the example of Rao and Ballard [1999], Lotter et al. [2018] provided another step in this direction,
comparing the responses of neural systems and their hierarchical predictive coding model. In the
current thesis, we have attempted to help further build the foundation for this collaborative effort.

4 Variational Autoencoders

Variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014] are latent variable
models parameterized by deep networks. As in hierarchical predictive coding, these models typically
contain Gaussian latent variables and are trained using variational inference. However, rather than
performing inference optimization directly, VAEs amortize inference [Gershman and Goodman, 2014].

4.1 Amortized Variational Inference

Amortization refers to spreading out costs. In amortized inference, these “costs” are the computational
costs of performing inference optimization. Thus, with q(z|x) = N (z;µq,diag(σ2

q )) and λ ≡ [µq,σq],
rather than separately optimizing λ for each data example, we amortize this optimization cost using a
learned optimizer, i.e. an inference model. By using this meta-optimization procedure, we can perform
inference optimization far more efficiently. The concept of inference models is deeply embedded with
deep latent variable models, popularized by the Helmholtz Machine [Dayan et al., 1995], which was
formulated as an autoencoder [Ballard, 1987]. Formally, in such setups, the inference model is a
direct mapping from x to λ:

λ← fφ(x), (25)

where fφ is a model (deep network) with parameters φ. Conventionally, we denote the approximate
posterior as qφ(z|x) to denote the parameterization by φ. Now, rather than optimizing λ using
gradient-based techniques, we periodically update φ using ∇φL = ∂L

∂λ
∂λ
∂φ , thereby letting fφ learn to

optimize λ. This procedure is incredibly simple, as we only need to tune the learning rate for φ, and
efficient, as we have an estimate of λ after only one forward pass through fφ. Amortization is also
widely applicable: if we can estimate ∇λL using stochastic gradient estimation (see above), we can
continue differentiating through the chain φ→ λ→ z→ L.

To differentiate through z ∼ qφ(z|x), we can use the pathwise derivative estimator, sometimes
referred to as the reparameterization estimator [Kingma and Welling, 2014]. This is accomplished
by reparameterizing z in terms of an auxiliary random variable. The most common example is
reparameterizing z ∼ N (z;µq,diag(σ2

q )) as z = µq + ε � σq, where ε ∼ N (ε; 0, I) and � denotes
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Figure 8: Variational Autoencoder (VAE). VAEs combine direct amortization (Eq. 25) and the
pathwise derivative estimator with Gaussian approximate posteriors to train deep latent variable
models. In the model diagram (top), the amortized inference model (dashed arrow) acts as an
encoder, with the conditional likelihood (solid arrow) acting as a decoder. Each are parameterized by
deep networks.

element-wise multiplication. We can then estimate ∇µqL and ∇σqL, allowing us to calculate the
inference model gradients, ∇φL.

When direct amortization is combined with the pathwise derivative estimator in deep latent
variable models, the resulting setup is referred to as a variational autoencoder [Kingma and Welling,
2014, Rezende et al., 2014]. In this autoencoder interpretation, qφ(z|x) is an encoder, z is the latent
code, and pθ(x|z) is a decoder. A computation graph is shown in Figure 8. This direct encoding
scheme seems intuitively obvious: in the same way that pθ(x|z) directly maps z to a distribution
over x, qφ(z|x) directly maps x to a distribution over z. Indeed, with perfect knowledge of pθ(x, z),
fφ could act as a lookup table, precisely mapping each x to the corresponding optimal λ. However,
in practice, direct amortization of this form tends to result in suboptimal estimates of λ [Cremer
et al., 2018], motivating the need for more powerful amortized inference techniques.

4.2 Iterative Amortized Inference

One method for improving direct amortization involves incorporating iterative updates [Hjelm et al.,
2016, Krishnan et al., 2018, Kim et al., 2018, Marino et al., 2018b], replacing a one-step inference
procedure with a more accurate multi-step procedure. Iterative amortized inference [Marino et al.,
2018b] maintains an inference model, but uses it to perform iterative updates on the approximate
posterior estimate. Following the notation from the previous section, the basic form of an iterative
amortized inference model is given as:

λ← fφ(λ,∇λL). (26)

Iterative inference models take in the current estimate of λ, as well as the gradient, ∇λL, and output
an updated estimate of λ. As with direct inference models, iterative inference model parameters are
updated using estimates of ∇φL. Note that Eq. 26 generalizes stochastic gradient-based optimization.
For instance, a special case is λ ← λ+ α∇λL, where α is a step-size parameter, however, Eq. 26
also contains more general non-linear updates [Andrychowicz et al., 2016].
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As we saw in Section 3.2, in latent Gaussian models, ∇λ is defined by the weighted errors, ξx
and ξz, and the Jacobian of the conditional likelihood, J (this was W in the linear model). Because
the conditional likelihood does not change across data examples, in latent Gaussian models, we can
consider iterative amortized inference models of the special form:

λ← fφ(λ, ξx, ξz). (27)

This is a learned, non-linear mapping from errors to updated estimates of the approximate inference
distribution, i.e. learned negative feedback. The distinction between direct and iterative amortization
is shown in Figures 10b & 10c. Iterative amortization can be readily extended to sequential models
[Marino et al., 2018a], resulting in a general predict-update inference scheme based on prediction
errors, highly reminiscent of Kalman filtering [Kalman, 1960]. Marino et al. [2020b] also applied
iterative amortized inference to perform policy optimization in reinforcement learning.

4.3 Normalizing Flows

Another development within VAEs is the use of normalizing flows [Rezende and Mohamed, 2015]. As
discussed in Section 2.2.1, flow-based distributions are invertible latent variable models, enabling
exact log-probability calculation. That is, through a sequence of invertible transforms, a flow-based
distribution attempts to map a variable with independent (or less dependent) dimensions, typically
from a standard Normal, to a sample from a more structured distribution. Conversely, using the
inverse transforms, we can attempt to remove these structured dependencies, i.e. normalization.
While such models can operate as standalone generative models [Dinh et al., 2015, 2017, Papamakarios
et al., 2017, Kingma and Dhariwal, 2018], they can also define the distributions within VAEs.

One can use normalizing flows to define the approximate posterior [Rezende and Mohamed, 2015,
Kingma et al., 2016], prior [Huang et al., 2017], and conditional likelihood [Agrawal and Dukkipati,
2016] in VAEs. In each case, a deep network defines the parameters (e.g., mean and variance) of a base
distribution over the less structured, normalized variable. Separate deep networks then parameterize
the invertible transforms, which add dependencies between dimensions of the less structured variable,
or, conversely, remove structure from the more structured, unnormalized variable.

Example: As a generic example, consider a less structured variable, u, defined by the distribution
pθ(u|·) = N (u;µθ(·),diag(σ2

θ(·))), where µθ and σθ are output by deep networks, with · denoting
conditioning (input) variables. We then consider an affine invertible transform [Dinh et al., 2017],
defined by a shift vector, αθ, and a scale matrix, Bθ, each of which may be functions of u (again,
parameterized by deep networks). This affine transform defines a more structured variable, v:

v = αθ +Bθu, (28)

which can now contain affine dependencies between dimensions. Note that for Eq. 28 to be invertible,
we require that Bθ itself is invertible, i.e., non-zero determinant. Thus, Bθ is a square matrix, and
u and v are the same dimensionality. If, instead, we are given an observation of v and want to
calculate its log-probability, we can apply the normalizing inverse transform to get u:

u = B−1θ (v −αθ), (29)

then use the change of variables formula (Eq. 6). This allows us to convert the log-probability
calculation from the more structured (complex) space of v to the less structured (simpler) space of u.
However, we need to account for the local scaling of space induced by Bθ through its determinant.
Note that the multivariate Gaussian density (Eq. 9) is a special case of this transform, taking
a standard Gaussian variable, e.g., u ∼ N (u; 0, I), and adding linear dependencies to yield a
multivariate Gaussian variable, v ∼ N (v;αθ,B

ᵀ
θBθ). In this case, where αθ and Bθ are constant,

applying the inverse transform removes linear dependencies between dimensions in v.
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Normalizing flows provide a general method for improving the flexibility of the distributions
within VAEs. This allows us to parameterize more flexible approximate posteriors for variational
inference [Rezende and Mohamed, 2015, Kingma et al., 2016, Tomczak and Welling, 2016, van den
Berg et al., 2018]. However, we can also apply normalizing flows on the model’s distributions, i.e. the
prior [Huang et al., 2017] and conditional likelihood [Agrawal and Dukkipati, 2016], allowing us to
model variable estimates and observations in a normalized space. While many prior works apply
normalizing flows across spatial dimensions, we can also add and remove temporal dependencies
[van den Oord et al., 2018]. In particular, building off of the Gaussian special case discussed above,
Gaussian autoregressive models (e.g. Figure 3) are equivalent to affine autoregressive normalizing flows
[Kingma et al., 2016]. In the linear case, this is also equivalent to Cholesky whitening [Pourahmadi,
2011].

Using this idea, Marino et al. [2020a] parameterized the conditional likelihood in sequential latent
variable models with autoregressive normalizing flows across time, i.e. sequential autoregressive flows.
At the observation level, the autoregressive flow acts as a moving frame of reference, as shown in
Figure 5b, removing simple temporal dependencies and allowing the latent variable model to focus
on modeling more complex spatiotemporal structure. In practice, this involves extracting a low-level
temporal prediction error (as in Eq. 20), then modeling this error using the latent variable model.
This technique has been successfully applied to video compression [Yang et al., 2020], as well as
parameterizing temporal dependencies in reinforcement learning policies [Guerra and Marino, 2020],
serving as a form of feedforward control.

5 Connections

We now connect two recent machine learning techniques, iterative amortized inference [Marino et al.,
2018b] and sequential autoregressive flows [Marino et al., 2020a], to their origins in predictive coding.

5.1 Iterative Amortization

Iterative amortized inference [Marino et al., 2018b] (Figures 9a & 10c) was inspired by the inference
scheme proposed by Rao and Ballard [1999] and Friston [2005]. In these early formulations of
hierarchical predictive coding, approximate inference is performed using gradient-based optimization
of a point estimate of the latent variables. These works made it clear that prediction (or reconstruction)
errors drive both inference and learning optimization, and this procedure can be readily extended to
sequential settings [Friston, 2008b]. However, such procedures typically assume that the inference
gradients, supplied by forward connections, can be easily calculated, but the weights of these forward
connections are, in fact, the Jacobian of the backward connections [Rao and Ballard, 1999] (Section 3).
This is an example of the weight transport problem [Grossberg, 1987], i.e. the weights of one set of
connections (forward) depends on the weights from another set of connections (backward). This is
generally regarded as not being biologically-plausible.

Amortization [Dayan et al., 1995] provides a simple solution to this problem: learn to perform
inference optimization. That is, rather than transporting the generative weights to the inference
connections, amortization learns a separate set of inference weights, potentially using similar local
learning rules [Bengio, 2014, Lee et al., 2015]. Thus, despite criticism from Friston [2018], amortization
may offer a more biologically-plausible account of inference. Further, as demonstrated in Marino et al.
[2018b,a, 2020b], by using non-linear functions, amortization is capable of automatically adjusting
update step sizes, yielding accurate estimates with exceedingly few inference iterations. These
substantial benefits in computational efficiency provide another argument for amortization over the
gradient-based schemes often employed in predictive coding.

Iterative amortization is an example of the more general concept of negative feedback. As noted
earlier, negative feedback was the core concept of cybernetics, which went on to inspire predictive
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(a) Iterative Amortized Inference

13

(b) Sequential Autoregressive Flows

Figure 9: Connections. Computation graphs illustrating (a) iterative amortized inference (applied
across time steps [Marino et al., 2018a]) and (b) sequential autoregressive flows. Iterative amortized
inference learns to update approximate posterior estimates using prediction errors or gradients.
Sequential autoregressive flows learn to perform temporal normalization, simplifying dynamics
modeling. Here, dashed arrows between gray circles denote the “inference” (normalizing) direction of
the normalizing flow. Iterative amortization and sequential autoregressive flows were inspired by
hierarchical and spatiotemporal predictive coding, respectively.

coding. While hierarchical predictive coding has largely focused on perceptual inference in cortex,
the principles of negative feedback appear to apply more broadly to neural systems. Indeed, even
at the outset of cybernetics, it was clear that cerebellum plays a central role in negative feedback
control [Wiener, 1948]. From more recent studies of cerebellum and other cerebellum-like structures
[Ito, 1998, Bell, 2001, Kennedy et al., 2014], we are beginning to understand how such circuits
correct sensorimotor prediction errors. One prominent example is given by the Purkinje cells of
the cerebellum, which appear to take in error signals as inputs and output motor corrections. This
follows the general paradigm of iterative amortization, mapping errors to updates. Casting these
neural circuits in terms of amortization, i.e. learned negative feedback, may provide insights into how
such error-correcting mechanisms are learned from experience.

5.2 Sequential Autoregressive Flows

The technique of sequential autoregressive flows [Marino et al., 2020a] (Figure 9b) was, in part,
inspired by the temporal normalization schemes from Srinivasan et al. [1982] and Dong and Atick
[1995], which are thought to occur in retina and first-order relays of thalamus. Unlike these earlier
works, which were limited to linear functions of previous inputs, sequential autoregressive flows can
utilize non-linear functions to parameterize the normalizing affine transform. Likewise, because these
feedforward transforms are learned using the prediction errors on the normalized variables, they can
adapt to meet the demands or limitations of higher-level models.

A related technique is that of generalized coordinates [Friston, 2008a], decomposing a sequence
into its temporal derivatives. Friston has suggested that this may be a general modeling technique
employed by neural circuits. As we have seen, a simplified version of sequential autoregressive flows,
using the previous variable as the affine shift, extracts an approximation of temporal derivatives.
Thus, given a short enough time step, ∆t = t1−t0, sequential autoregressive flows provide a technique
for automatically learning an approximation of generalized coordinates.

The same technique can be applied to control [Guerra and Marino, 2020], serving as a low-level
dynamical policy, i.e. a dynamical motor basis for control. While early sensory processing and motor
processing are often considered separately, we see that spatiotemporal dependencies are central to
both areas. Normalization (and its inverse) plays a singular role in both cases, simplifying estimation
for upstream models. If normalization is truly a canonical neural computation [Carandini and
Heeger, 2012], then similar temporal normalization operations may parameterize dynamics estimation
throughout cortex, operating in conjunction with spatial normalization. This was demonstrated
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(c) VAE (Iterative)

Figure 10: Hierarchical Predictive Coding & VAEs. Computation diagrams for (a) hierarchical
predictive coding [Rao and Ballard, 1999], (b) VAE with direct amortized inference [Kingma and
Welling, 2014, Rezende et al., 2014], and (c) VAE with iterative amortized inference [Marino et al.,
2018b]. Jᵀ denotes the transposed Jacobian matrix of the generative model’s conditional likelihood.
Red dotted lines denote gradients, and black dashed lines denote amortized inference. Hierarchical
predictive coding and VAEs are highly similar in both their model formulation and inference approach.

in Marino et al. [2020a], where a modified VideoFlow model [Kumar et al., 2020] utilized spatial
normalization within time steps and temporal normalization across time steps, demonstrating the
utility of these complementary procedures.

Marino et al. [2020a] exclusively investigated normalizing flows with affine transforms [Dinh et al.,
2017], due to their simplicity and their similarity to proposed neural computations. Given their
connection with Gaussian densities and Gaussianization [Chen and Gopinath, 2001] (normal ization is,
ultimately, the process of converting a data distribution into a standard Normal (Gaussian) density),
transforms of this form are prominent in the statistics literature [Friedman, 1987, Kessy et al.,
2018]. However, the change of variables formula readily applies to all invertible transforms, including
non-affine transforms. This more general perspective, afforded by normalizing flows, offers a method
toward improving spatiotemporal normalization in current models. Similarly, it suggests that neural
circuits may implement multiple computational forms of normalization transforms, ranging from
simple, affine or constant transforms to more complex, non-affine transforms [Durkan et al., 2019].
These may rely on computational mechanisms within individual neurons as well as spatiotemporal
interactions between neurons.

6 Correspondences

Having drawn connections between recent machine learning approaches and their inspirations in
predictive coding, we can now traverse this bridge from machine learning, through predictive coding,
to neuroscience. In this section, we identify correspondences implied by this bridge. In particular, we
explore the consequences of two implied correspondences: 1) pyramidal neurons and deep networks
and 2) lateral inhibition and normalizing flows. These correspondences should be interpreted at
a functional level, potentially shedding new light on the computational and learning mechanisms
employed in biological neural circuits. In some aspects, these correspondences offer a departure from
the current paradigm, providing an alternative approach toward connecting these areas.

Hierarchical predictive coding and deep latent variable models, particularly variational autoen-
coders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014], are highly related in both their
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model formulations and inference approaches (Figure 10). Specifically,

• Model Formulation: Both areas focus on hierarchical latent Gaussian models with non-
linear dependencies between latent levels, as well as dependencies within levels via covariance
matrices (predictive coding) or normalizing flows (VAEs). Note that a covariance matrix is
computationally equivalent to an affine normalizing flow with linear dependencies [Kingma
et al., 2016].

• Inference: Both areas use variational inference, often with Gaussian approximate posteriors.
While predictive coding employs gradient-based optimization and VAEs employ amortized
optimization, these are just different design choices in solving the same inference optimization
problem.

While previous works within predictive coding and deep latent variable models have explored distinct
design choices, e.g. in parameterizing dynamics, the two areas share a common mathematical
foundation, inherited from cybernetics and descendant areas.

With this connection explicitly established, we can now identify the biological correspondences
implied by the connection from VAEs to predictive coding to neuroscience. Looking at Table 1,
we see that top-down and bottom-up cortical projections, each mediated by pyramidal neurons,
respectively parameterize the generative model and inference updates. Mapping this onto VAEs implies
that deep (artificial) neural networks are in correspondence with pyramidal neuron
dendrites (Figure 11). This analogy is not perfect, as each output dimension of a deep network
shares parameters with the other outputs through previous layers. In this regard, the analogy to
pyramidal dendrites in cortex would specifically imply a separate deep network per variable in a
VAE. Or, conversely, a deep network corresponds to a collection of pyramidal dendrites operating
in parallel. Lateral interneurons, which parameterize the inverse covariance matrices
at each latent level in predictive coding, map onto normalizing flows. As mentioned
above, normalizing flows are a non-linear generalization of linear covariance matrices, suggesting
the possibility of non-linear normalization computations in cortex and elsewhere. We note that
normalizing flows are also implemented using deep networks, however, the effect that they have on
the core probabilistic computation tends to be restricted and simple (e.g. affine) to ensure tractability.
These correspondences are obviously quite coarse-grained, and many details are left to be filled-in.
However, they may provide a useful starting point for shifting the current analogies between machine
learning and neuroscience. Below, we explore some of the consequences of these correspondences.

6.1 Pyramidal Neurons & Deep Networks

Non-linear Dendritic Computation Placing deep networks in correspondence with pyramidal
dendrites departs from the traditional one-to-one correspondence of biological and artificial neurons
[McCulloch and Pitts, 1943]. This suggests that (some) individual biological neurons may be
better computationally described as non-linear functions. Evidence from neuroscience supports this
analogy. Early work in simulations proposed that individual pyramidal neurons, through dendritic
processing, could operate as multi-layer artificial networks [Zador et al., 1992, Mel, 1992]. This was
later supported by empirical findings that hippocampal pyramidal dendrites act as computational
‘subunits,’ yielding the equivalent of a two-layer artificial network [Poirazi et al., 2003, Polsky et al.,
2004]. More recently, Gidon et al. [2020] demonstrated that individual L2/3 pyramidal neurons are
capable of computing the XOR operation, known for requiring non-linear processing [Minsky and
Papert, 1969]. Likewise, Jones and Kording [2020] recently demonstrated a non-linear dendritic
model capable of performing classification tasks, and Beniaguev et al. [2020] demonstrated that
multi-layer spatiotemporal convolutional networks are required to accurately model L5 pyramidal
neurons. This potential functional correspondence between deep networks and pyramidal dendrites
posits a substantial role for dendritic computation [London and Häusser, 2005], moving beyond
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Figure 11: Pyramidal Neurons & Deep Networks. Connecting deep latent variable models with
predictive coding places deep networks (bottom) in correspondence with the dendrites of pyramidal
neurons (top). This is in contrast with conventional one-to-one analogies of biological and artificial
neurons, suggesting a larger role for non-linear dendritic computation and alternative correspondences
for backpropagation.

the overly simplistic comparison of biological and artificial neurons. Further, rather than assuming
every neuron is equivalent, i.e. linear summation with non-linearity, separate classes of neurons
would represent distinct function classes, likely derived from their morphology. This places a greater
emphasis on understanding the particular intricacies of neural circuits, rather than assuming a
uniform network of identical computational elements.

Amortization It is feasible that similar hardware and mechanisms underlying generative predic-
tions could also perform inference updating, i.e. amortization. This is the insight of deep latent
variable models: deep networks can parameterize conditional probabilities in both directions. The
computational components are identical, with different inputs and output targets. Building off of
the correspondence of pyramidal dendrites and deep networks, in cortex, we see particular classes of
pyramidal neurons with separate apical and basal dendrites. These segregated dendritic compart-
ments selectively take inputs from top-down and bottom-up pathways respectively [Bekkers, 2011,
Guergiuev et al., 2016, Richards], thought to perform separate computations. These pyramidal neu-
rons could implement a form of iterative amortized inference model [Marino et al., 2018b], separately
processing top-down and bottom-up error signals to update inference estimates (Figure 12). This
agrees with the conjecture from predictive coding that separate neurons in the forward pathway
perform inference updating. Amortization also resolves the weight-transport issue from predictive
coding, as separate inference weights are learned. While some empirical evidence appears to support
amortization [Yildirim et al., 2015, Dasgupta et al., 2018], we note that Friston [2018] remains
skeptical of its biological-plausibility. Further experiments, particularly at the cortical circuit level,
are needed to resolve this question. For instance, amortization would require some form of stochastic
gradient estimation, e.g. reparameterization gradients [Kingma and Welling, 2014]. Although all of
the necessary error signals are local to the amortized optimizer, the details remain unclear.
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Figure 12: Pyramidal Neurons & Amortization. In predictive coding, inference updating is
implemented using forward pyramidal neurons in cortex, taking prediction errors as input. In deep
latent variable models, iterative amortized inference plays a similar role, continuing the analogy of
pyramidal neurons and deep networks. Interestingly, this suggests a separation of processing in apical
(upper) and basal (lower) dendrites, incorporating errors from the current and lower level.

Neural Oscillations Oscillations are a common feature of neural circuits, giving rise to various
frequency bands in the local field potential (LFP). These frequencies are thought to arise from the
synchronous activity of populations of neurons, such as recurrent activity in hippocampus resulting in
the theta frequency band (4–10 Hz). Bastos et al. [2015] identify distinct frequency bands associated
with forward (gamma, 30–80 Hz) and backward (beta, 10–30 Hz) activity in neocortex. Likewise,
Walsh et al. [2020], reviewing the literature, note that violations of expectations, i.e. large prediction
errors, are associated with increased gamma amplitude, whereas beta amplitude tends to increase in
preparation for a predicted stimulus [Fujioka et al., 2009]. In agreement with hierarchical predictive
coding, this supports the conjecture that backward projections convey predictions, while forward
projections perform inference updating using prediction errors. If we consider the gamma and beta
frequency bands as distinct network-wide “clock rates” associated with inference and dynamics
estimation, respectively, this suggests that cortex performs anywhere from 1–8 inference iterations per
time step. Each time step would constitute 30–100 ms. As seen with amortized variational filtering
[Marino et al., 2018a], as well iterative amortized policy optimization [Marino et al., 2020b], even
with a single inference iteration per time step, amortization can yield reasonably accurate inference
estimates. Note that direct amortization [Dayan et al., 1995] would suggest that these frequencies
should be identical, in disagreement with empirical observations. Gradient-based optimization, in
contrast, as suggested and employed by Rao and Ballard [1999] and Friston [2005], may not be
sufficient to provide accurate inference estimates with so few iterations. This may provide further
support for the claim that forward pyramidal neurons in cortex implement a form of iterative
amortized inference.

Backpropagation Training deep networks at scale appears to require gradient-based parameter
optimization, i.e. backpropagation [Werbos, 1974, Rumelhart et al., 1986]. However, the biological
plausibility of backpropagation remains an open question [Lillicrap et al., 2020]. Critics argue that
backpropagation requires non-local learning signals and other techniques [Grossberg, 1987, Crick,
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Figure 13: Backpropagation. Placing deep networks in correspondence with pyramidal neuron
dendrites suggests an alternative perspective on the biological-plausibility of backpropagation. In deep
latent variable models, backpropagation is only performed across variables that are directly connected
through a conditional probability (left). From the perspective presented here, this corresponds to
learning within pyramidal neurons. One possible implementation may be through backpropagating
action potentials, perhaps combined with other neuromodulatory inputs (right).

1989], whereas the brain relies largely on local learning rules [Hebb, 1949, Markram et al., 1997, Bi
and Poo, 1998]. A number of “biologically-plausible” formulations of backpropagation have been
proposed [Stork, 1989, Körding and König, 2001, Xie and Seung, 2003, Hinton, 2007, Lillicrap et al.,
2016], attempting to reconcile this disparity and others. Yet, consensus is still lacking regarding the
biological implementations of these proposed techniques. From another perspective, the apparent
biological implausibility of backpropagation may instead be the result of incorrectly assuming a
one-to-one correspondence between biological and artificial neurons.

If deep networks are in correspondence with pyramidal dendrites, this suggests a different
perspective on the biological-plausibility of backpropagation. In hierarchical latent variable models,
prediction errors at each level of the latent hierarchy provide a local learning signal [Friston, 2005,
Bengio, 2014, Lee et al., 2015, Whittington and Bogacz, 2017]. Thus, the global objective is
decomposed into local errors, with learning within each latent level performed through gradient-based
optimization. This is exemplified by deep latent variable models, which utilize backpropagation within
each latent level, but not (necessarily) across latent levels. Again, considering the correspondence
of pyramidal dendrites and deep networks, this suggests that learning within pyramidal neurons
may be more analogous to backpropagation (Figure 13). Not surprisingly, one possible candidate is
backpropagating action potentials [Stuart and Sakmann, 1994, Williams and Stuart, 2000]. These
occur in the dendrites of pyramidal neurons, actively propagating a signal of neural activity back
to synaptic inputs [Stuart et al., 1997, Brunner and Szabadics, 2016]. This results in the location-
dependent influx of calcium, leading to a variety of synaptic changes throughout the dendritic tree
[Johenning et al., 2015]. Indeed, Schiess et al. [2016] recently investigated a computational model of
gradient backpropagation within dendritic trees. While many details remain unclear, this overall
perspective of backpropagation within neurons, rather than across networks of neurons, offers a more
biologically-plausible alternative; all signals are local to the pyramidal neurons/dendrites within
the cortical circuit. Given the proposed theoretical role and empirical observations, this possible
correspondence between backpropagation and backpropagating action potentials warrants further
investigation.
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6.2 Lateral Inhibition & Normalizing Flows

Sensory Input Normalization Sensory stimuli are highly redundant in both space and time.
Examples include luminance at neighboring photoreceptors or pressure on adjacent mechanoreceptors,
each of which tend to persist over time intervals. One of the key computational roles of early sensory
areas, e.g. retina, appears to be in reducing these redundancies through normalization. In retina,
such normalization operations are carried out through lateral inhibition via horizontal and amacrine
cells. As a result, the transmitted output signals are less correlated [Graham et al., 2006, Pitkow
and Meister, 2012]. As discussed in this paper and elsewhere, normalization and prediction are
inseparable, i.e. one must form a prediction in order to normalize. Accordingly, previous works have
framed early sensory processing in terms of (spatiotemporal) predictive coding [Srinivasan et al., 1982,
Hosoya et al., 2005, Palmer et al., 2015]. This is often motivated in terms of increased sensitivity
or efficiency [Srinivasan et al., 1982, Atick and Redlich, 1990] due to redundancy reduction [Barlow
et al., 1961, 1989], i.e. compression.

If we consider cortex as a hierarchical latent variable model of sensory inputs, then early sensory
areas are implicated in parameterizing the conditional likelihood. The ubiquity of normalization
operations in early sensory areas is suggestive of normalization in a flow-based model. That is,
early sensory areas may implement the “inference” direction of a flow-based conditional likelihood
[Agrawal and Dukkipati, 2016, Winkler et al., 2019]. This would create a learned, normalized space
in which cortex makes predictions. In addition to the sensitivity and efficiency arguments above,
this could simplify downstream generative modeling and improve generalization, as demonstrated in
Marino et al. [2020a]. Interestingly, Rao and Ballard [1999] employ a similar whitening scheme on
image inputs, presumably to imitate retina. Normalizing flows offers a generalization of this idea to
non-affine parameterizations and multiple stages of normalization. Further, framing early sensory
areas in terms of normalizing flows connects these computations conceptually with the rest of the
cortical generative model, i.e. truly evaluating the data-level predictions of cortex would require
inverting the normalization of early sensory areas. While normalizing flows may not provide a perfect
description of early sensory processing (e.g. these operations may not be completely invertible), this
framework may help to unify many disparate input normalization circuits.

Normalization in Thalamus & Cortex Normalization is also thought to be a key aspect of
first-order relays in thalamus, such as the lateral geniculate nucleus (LGN). Dong and Atick [1995]
proposed that inhibition across time in LGN could provide a mechanism for temporally decorrelating
the input from retina, with some supporting evidence provided by Dan et al. [1996]. Again, this
can be considered as a form of temporal predictive coding [Srinivasan et al., 1982], removing easily
predictable temporal information. Following the interpretation above, normalization in thalamus may
provide a second stage of normalizing flow, further removing redundancy. In Marino et al. [2020a], we
implemented this general technique using autoregressive flows in deep latent variable models. There,
we saw that low-level temporal normalization removes static backgrounds, improving modeling and
generalization. Further work is needed to assess the functional form (affine/non-affine) and types of
dependencies (linear/non-linear) implemented in first-order thalamic relays, though suggestions are
given by Dong and Atick [1995].

Normalization, via local lateral inhibition, is also found throughout cortex [King et al., 2013].
Friston [2005] suggested that lateral inhibition plays the computational role of inverse covariance
(precision) matrices, modeling dependencies between dimensions within the same latent level of the
hierarchy. This corresponds to parameterizing approximate posteriors [Rezende and Mohamed, 2015,
Kingma et al., 2016] and/or conditional priors [Huang et al., 2017] with affine normalizing flows
with linear dependencies.1 Again, note that normalizing flows offers a more general mathematical
framework for describing these normalization computations. Further, predictive coding often assumes

1Specifically, Friston’s proposal corresponds to ZCA whitening [Friston, 2005], whereas those within machine
learning have explored Cholesky whitening [Kingma et al., 2016].
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Figure 14: Computational Schematic of the Visual Pathway. Interpreting the early visual
pathway from the perspective of a latent variable model, we can assign computational functions
to retina, LGN, and cortex. Retina and LGN are interpreted as implementing normalizing flows,
i.e. spatiotemporal predictive coding, reducing spatial and temporal redundancy in the visual input.
This is shown as dashed arrows between gray circles. LGN also serves as the lowest level for
hierarchical predictions, which are computed through backward connections from cortex. Using
prediction errors throughout the hierarchy, forward cortical connections update latent estimates.

that these dependencies are modeled using symmetric lateral weights [Friston, 2005]. In contrast,
normalizing flows also permits non-symmetric schemes, e.g. using spatially autoregressive models
[Kingma et al., 2016] or ensembles of such models [Uria et al., 2014]. Interestingly, Vahdat and
Kautz [2020] recently applied normalizing flows in large-scale hierarchical latent variable models, but
restricted dependencies to local spatial patches for efficiency, perhaps more in-line with local lateral
inhibition in cortex. Marino et al. [2020a] also applied normalizing flows across time in hierarchical
models to assist in parameterizing dynamics, discussing connections to Friston’s notion of generalized
coordinates [Friston, 2008a]. Thus, multiple forms of spatial and temporal normalization may occur
within cortex, allowing cortical columns to add and remove dependencies across space and time.
Finally, multiple works within predictive coding have explored the use of prediction precision as a
form of attention [Spratling, 2008, Feldman and Friston, 2010]. Increasing the precision of predictions
modulates the gain of prediction errors in driving inference, leading to more precise inferred estimates.
This may prove to be a useful technique in machine learning. The overall computational scheme,
ignoring spatiotemporal normalization in cortex for simplicity, is shown in Figure 14.

Motor Dependencies Much like sensory input areas, there is a striking degree of low-level
interneuron circuitry in motor output areas. A canonical example is central pattern generator (CPG)
circuits, which, through local excitation and inhibition, give rise to coordinated muscle activation
[Marder and Bucher, 2001]. These circuits provide a basis of “motor primitives,” allowing muscle
activations to be carried out in a lower-dimensional manifold rather than the entire combinatorial
space. Given the anatomical similarity of these circuits with normalization circuitry in sensory areas,
as well as the close relationship between adding (generation) and removing (inference) dependencies
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Figure 15: Adding & Removing Dependencies with Normalizing Flows. Normalizing flows
provides a general mathematical framework for removing (left) or adding (right) probabilistic
dependencies. Using lateral interactions, one can move between a normalized (top) or un-normalized
(bottom) space. Normalized spaces have benefits for compression, whereas un-normalized spaces are
more expressive. Neural systems may employ these transforms for sensory and motor processing.

in normalizing flows, it is possible that such low-level motor circuits are implementing flow-based
distributions. Under this scheme, spinal circuits convert compressed, uncorrelated signals from
higher-level motor areas into correlated low-level muscle activation. Similar efficiency arguments
from sensory input areas [Atick and Redlich, 1990] are applicable to motor outputs, treating the
spinal cord as a communication channel. Further, spatiotemporal dependencies in muscle activation
may also improve the expressive capacity and generalization of motor routines. Indeed, multiple
works have investigated improving control policies with normalizing flows across motor dimensions
[Haarnoja et al., 2018, Tang and Agrawal, 2018, Ward et al., 2019], and Guerra and Marino [2020]
investigated incorporating flow-based motor dependencies across time. Consistent with this setup,
it has been empirically observed in neural systems that higher-level motor areas output transient
update signals, which are converted to lower-level motor trajectories [Shalit et al., 2012]. While
these findings are encouraging, more apparent benefits are likely to arise in high-dimensional action
spaces, where the curse of dimensionality [Chen and Gopinath, 2001] makes it essential to model
dependencies for effective exploration. For instance, current MuJoCo environments from OpenAI
gym [Todorov et al., 2012, Brockman et al., 2016] contain <20 action dimensions, whereas it has been
estimated that there are roughly 800 independent dimensions to human motor control [Powers, 1973].
Operating and learning efficiently in such large action spaces may require modeling spatiotemporal
dependencies through some form of hierarchical or flow-based decomposition.

7 Discussion

In this chapter, we connected the ideas presented in this thesis back to their origins in predictive
coding. The two core techniques developed in this thesis, iterative amortized inference and sequential
autoregressive flows, map onto aspects of hierarchical and spatiotemporal predictive coding, respec-
tively. By connecting these techniques back to predictive coding, we arrived at a variety of possible
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implied correspondences between machine learning and neuroscience. In particular,

• we identified the dendrites of pyramidal neurons as functionally analogous to (nonlinear) deep
networks, and

• we identified lateral inhibition as implementing normalizing flows.

Placing pyramidal neuron dendrites in correspondence with deep networks departs from the traditional
one-to-one analogy of biological and artificial neurons, raising a host of questions regarding dendritic
computation and learning via backpropagation. Likewise, normalizing flows offers a more general
framework for considering the normalization computations carried out by lateral inhibitory interactions
found within multiple brain regions. We are hopeful that connecting these areas will provide new
insights for both machine learning and neuroscience.

For practical reasons, we primarily focused on perception in discussing predictive coding and
the ideas in this paper. This is a result of the fact that predictive coding was initially developed
and studied in the context of generative models of sensory inputs [Srinivasan et al., 1982, Rao and
Ballard, 1999, Friston, 2005]. However, if the cortical microcircuit implements a general-purpose
modeling and inference algorithm, we should expect similar computations to be applicable to motor
and prefrontal cortices. Over the past decade, Friston and colleagues have developed a range of
exciting ideas, interpreting motor control as a process of proprioceptive prediction [Adams et al.,
2013] and prefrontal cortex as performing hierarchical goal inference [Pezzulo et al., 2018]. Such
ideas can be seen as modern extensions of early ideas in cybernetics [Wiener, 1948, MacKay, 1956,
Powers, 1973], using motor control to correct for discrepancies (errors) between desired and actual
outcomes. Indeed, as shown in Marino et al. [2020b], Guerra and Marino [2020], the same modeling
and inference techniques used for perception can be applied to control. Nevertheless, further work is
needed within machine learning to unify perception and control under a single formulation.
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Georg B Keller, Tobias Bonhoeffer, and Mark Hübener. Sensorimotor mismatch signals in primary
visual cortex of the behaving mouse. Neuron, 74(5):809–815, 2012.

Ann Kennedy, Greg Wayne, Patrick Kaifosh, Karina Alviña, LF Abbott, and Nathaniel B Sawtell.
A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
Nature neuroscience, 17(3):416–422, 2014.

Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. The
American Statistician, 72(4):309–314, 2018.

Yoon Kim, Sam Wiseman, Andrew C Miller, David Sontag, and Alexander M Rush. Semi-amortized
variational autoencoders. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

Paul D King, Joel Zylberberg, and Michael R DeWeese. Inhibitory interneurons decorrelate excitatory
cells to drive sparse code formation in a spiking model of v1. Journal of Neuroscience, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

Durk P Kingma and Max Welling. Stochastic gradient vb and the variational auto-encoder. In
Proceedings of the International Conference on Learning Representations, 2014.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pages 4743–4751, 2016.

Konrad P Körding and Peter König. Supervised and unsupervised learning with two sites of synaptic
integration. Journal of computational neuroscience, 11(3):207–215, 2001.

Rahul G Krishnan, Dawen Liang, and Matthew Hoffman. On the challenges of learning with inference
networks on sparse, high-dimensional data. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 143–151, 2018.

Alex Krizhevsky and Geoffrey E Hinton. Learning multiple layers of features from tiny images. 2009.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent
Dinh, and Durk P Kingma. Videoflow: A flow-based generative model for video. In International
Conference on Learning Representations, 2020.
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