
In latent Gaussian models, the gradients for the approximate 
posterior parameters include Jacobians and errors. E.g.: 

where 

We propose letting the inference model learn the Jacobian, 
encoding the error terms. This allows us to avoid computing 
gradients during inference, and since the errors contain 
general curvature information, models of this form can 
converge to better estimates in fewer iterations.

Encoding Errors

� log p(x)

MNIST
Single-Level

Standard 84.14± 0.02
Iterative 83.84± 0.05

Hierarchical

Standard 82.63± 0.01
Iterative 82.457± 0.001

CIFAR-10
Single-Level

Standard 5.823± 0.001
Iterative 5.64± 0.03

Hierarchical

Standard 5.565± 0.002
Iterative 5.456± 0.005

 

Iterative amortized inference models efficiently and 
accurately perform variational inference optimization by 
iteratively encoding approximate posterior gradients or errors, 
rather than directly encoding data examples. They 
• Extend amortized inference models to iterative estimation. 
• Provide a principled method of explicitly including latent 

priors in inference optimization. 
• Outperform standard inference models on image and text 

data sets. 
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Iterative inference models encode gradients or errors, which 
explicitly account for latent priors during optimization. 
This is important when these priors vary, as in hierarchical 
and dynamical models. 

Previous works have proposed  
heuristics to account for these priors, 
such as top-down inference [5] in hierarchical models. 
The gradients help to justify these techniques. E.g., in 
hierarchical models: 

where      is the “top-down” error from the prior. Without 
access to these terms, a bottom-up standard inference model 
must implicitly estimate the prior. 

Similar arguments apply to dynamical latent variable models, 
where iterative inference models can explicitly account for 
dynamical priors.

Visualizing Optimization Reconstructions

Comparing with Conventional Optimization Comparing with Standard Inference Models

Inference Iterations Data

Summary 

Iterative inference models outperform conventional 
optimizers in both speed and performance.
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Incorporating Latent Priors
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Adaptive updates to the approximate posterior parameters.

Perplexity

RCV1
Standard 323± 3
Iterative 285.0± 0.1

Iterative inference 
models outperform 

comparable standard 
inference models 

across data sets and 
model architectures.
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Variational EM Algorithm [1]: 

          Variational E-Step (Inference):  
          Variational M-Step (Learning):

Conventional inference optimization, (e.g. SVI [2]):

Standard Inference Models, (e.g. VAE [3, 4]):

Iterative Inference Models:
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