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Abstract
We introduce the variational filtering EM algo-
rithm, a simple, general-purpose method for per-
forming filtering variational inference in deep dy-
namical latent variable models. We derive the
algorithm from the variational objective in the fil-
tering setting. By performing inference optimiza-
tion with iterative amortized inference models,
we obtain a computationally efficient implementa-
tion of the algorithm, which we call amortized
variational filtering. We present experiments
demonstrating that this general-purpose method
improves inference performance on several recent
dynamical latent variable models.

1. Introduction
Complex tasks with time-series inputs, like audio compre-
hension or robotic manipulation, must often be performed
online, where the model can only consider past and present
information at each step. Models for such tasks frequently
operate by inferring the hidden state state of the world at
each time-step, as in e.g. a Hidden Markov Model. This
type of online inference procedure is known as filtering.

Learning filtering models purely through supervised labels
or rewards can be impractical, requiring massive collections
of labeled data or significant efforts at reward shaping. But
deep generative models can learn and infer hidden struc-
ture and states directly from data. Latent variable models
(Gregor et al., 2014; Kingma & Welling, 2014; Rezende
et al., 2014), in particular, offer a promising direction; they
infer latent representations using expressive deep networks,
commonly using variational methods to perform inference
(Jordan et al., 1998). Recent works have extended deep
latent variable models to the time-series setting, e.g. (Chung
et al., 2015; Fraccaro et al., 2016). However, inference pro-
cedures for these dynamical models have been proposed on
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the basis of intuition rather than from a rigorous inference
optimization perspective. These hand–designed methods
are theoretically lacking, potentially limiting performance.

We introduce variational filtering EM, a general algorithm
for performing filtering variational inference and learning
that is rigorously derived from the filtering variational objec-
tive. As detailed below, the result of applying the standard
variational objective to a sequence of observations is a series
of inference optimization objectives: one at each time-step.
If, in optimizing each of these objectives, a model initializes
its estimate of the latent state from the previous time-step’s
prior distribution, a classic Bayesian filtering prediction-
update loop naturally emerges. This contrasts with existing
filtering approaches for deep dynamical models, which use
inference models that do not explicitly account for prior pre-
dictions during inference, presumably because the inference
optimizations at each step can be difficult. However, using
iterative inference models (Marino et al., 2018), which over-
come this difficulty, we develop a computationally efficient
implementation of the variational filtering EM algorithm,
which we refer to as amortized variational filtering (AVF).

The main contributions of this paper are the variational filter-
ing EM algorithm and its amortized implementation, AVF.
This is a general-purpose filtering algorithm, widely applica-
ble to dynamical latent variable models (as we demonstrate
in our experiments). Moreover, the variational filtering EM
algorithm is derived from the filtering variational objective,
providing a solid theoretical framework for filtering infer-
ence. By precisely specifying the inference optimization
procedure, this method takes a simple form compared to pre-
vious hand-crafted methods. Using several deep dynamical
latent variable models, we demonstrate that this filtering ap-
proach compares favorably against current methods across
a variety of benchmark sequence data sets.

2. Background
Section 2.1 provides the form of a general dynamical latent
variable model. Section 2.2 covers variational inference, an
approximate inference technique. Many deep latent vari-
able models are trained efficiently by amortizing inference
optimization (Section 2.3). Applying this technique to dy-
namical models is non-trivial, leading many prior works to
use handcrafted amortized inference methods (Section 2.4).
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2.1. General Dynamical Latent Variable Model

A sequence of T observations, x≤T , can be modeled using
a dynamical latent variable model, pθ(x≤T , z≤T ), which
models the joint distribution between x≤T and a sequence
of latent variables, z≤T , with parameters θ. It is typically
assumed that pθ(x≤T , z≤T ) can be factorized into condi-
tional joint distributions at each step, pθ(xt, zt|x<t, z<t),
which are conditioned on preceding variables. This results
in the following auto-regressive formulation:

pθ(x≤T , z≤T ) =

T∏
t=1

pθ(xt, zt|x<t, z<t) (1)

=

T∏
t=1

pθ(xt|x<t, z≤t)pθ(zt|x<t, z<t).

pθ(xt|x<t, z≤t) is the observation model, and
pθ(zt|x<t, z<t) is the dynamics model, both of which
can be arbitrary functions of their conditioning variables.
However, while eq. 1 provides the general form of a
dynamical latent variable model, further assumptions about
the conditional dependencies of the random variables,
e.g. Markov, or the functional forms of the observation
and dynamics models, e.g. linear, are often necessary for
tractability.

2.2. Variational Inference

Given a model and a set of observations, we typically want
to infer the posterior, p(z≤T |x≤T ), for each sequence and
learn the model parameters, θ. Inference can be performed
online or offline through Bayesian filtering or smoothing
respectively (Särkkä, 2013), and learning can be performed
through maximum likelihood estimation. Unfortunately,
exact inference and learning are intractable for all but the
simplest model classes. For non-linear functions, which are
present in deep latent variable models, we must resort to
approximate inference. Variational inference (Jordan et al.,
1998) reformulates inference as optimization by introduc-
ing an approximate posterior, q(z≤T |x≤T ), then minimiz-
ing the KL-divergence to the true posterior, p(z≤T |x≤T ).
To avoid evaluating p(z≤T |x≤T ), one can express the KL-
divergence as

DKL(q(z≤T |x≤T )||p(z≤T |x≤T )) = log pθ(x≤T ) + F ,
(2)

where F is the variational free energy, also referred to as
the (negative) evidence lower bound or ELBO, defined as

F ≡ −Eq(z≤T |x≤T )

[
log

pθ(x≤T , z≤T )

q(z≤T |x≤T )

]
. (3)

In eq. 2, log pθ(x≤T ) is independent of q(z≤T |x≤T ), so
one can minimize the KL-divergence to the true posterior,
thereby performing approximate inference, by minimizing

F w.r.t. q(z≤T |x≤T ). Further, as KL-divergence is non-
negative, eq. 2 implies that free energy upper bounds the
negative log likelihood. Therefore, upon minimizing F
w.r.t. q(z≤T |x≤T ), one can use the gradient ∇θF to learn
the model parameters. These two optimization procedures
are respectively the expectation and maximization steps of
the variational EM algorithm (Neal & Hinton, 1998), which
alternate until convergence. To scale this algorithm, stochas-
tic gradients can be used for both inference (Ranganath et al.,
2014) and learning (Hoffman et al., 2013).

2.3. Amortized Variational Inference

Performing inference optimization using conventional
stochastic gradient descent techniques can be computation-
ally demanding, potentially requiring many inference iter-
ations. To increase efficiency, a separate inference model
can learn to map data examples to approximate posterior
estimates (Dayan et al., 1995; Gregor et al., 2014; Kingma
& Welling, 2014; Rezende et al., 2014), thereby amortizing
inference across examples (Gershman & Goodman, 2014).
Denoting the distribution parameters of q as λq (e.g. Gaus-
sian mean and variance), standard inference models take the
form

λq ← fφ(x), (4)

where the inference model is denoted as f with parameters
φ. These models, though efficient, have limitations. No-
tably, because the models only receive the data as input,
they are unable to account for empirical priors. Empirical
priors arise in the dynamics of dynamical models, forming
priors across time steps, as well as in hierarchical models,
forming priors across levels. Previous works have attempted
to overcome their noninclusion of empirical priors through
heuristics, using “top-down” inference in hierarchical mod-
els (Sønderby et al., 2016) and recurrent inference models
in dynamical models, e.g. (Chung et al., 2015).

Iterative inference models (Marino et al., 2018) directly
account for these priors, instead performing inference op-
timization by iteratively encoding approximate posterior
estimates and gradients:

λq ← fφ(λ
q,∇λqF). (5)

The gradients, ∇λqF , can be estimated through black box
methods (Ranganath et al., 2014) or the reparameterization
trick (Kingma & Welling, 2014; Rezende et al., 2014) when
applicable. Analogously to learning to learn (Andrychow-
icz et al., 2016), iterative inference models learn to per-
form inference optimization, thereby learning to infer. Eq.
5 provides a viable encoding form for an iterative infer-
ence model, but other forms, such as additionally encoding
the data, x, can potentially lead to faster inference conver-
gence. Empirically, iterative inference models have also
been shown to yield improved modeling performance over
comparable standard models (Marino et al., 2018).
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2.4. Related Work

Many deterministic deep dynamical latent variable mod-
els have been proposed for sequential data (Chung et al.,
2014; Srivastava et al., 2015; Lotter et al., 2016; Finn et al.,
2016). While these models often capture many aspects of
the data, they cannot account for the uncertainty inherent in
many domains, typically arising from partial observability
of the environment. By averaging over multi-modal dis-
tributions, these models often produce samples in regions
of low probability, e.g. blurry video frames. This inade-
quacy necessitates moving to probabilistic models, which
can explicitly model uncertainty to accurately capture the
distribution of possible futures.

Amortized variational inference (Kingma & Welling, 2014;
Rezende et al., 2014) has enabled many recently proposed
probabilistic deep dynamical latent variable models, with
applications to video (Walker et al., 2016; Karl et al., 2016;
Xue et al., 2016; Johnson et al., 2016; Gemici et al., 2017;
Fraccaro et al., 2017; Babaeizadeh et al., 2018; Denton &
Fergus, 2018; Li & Mandt, 2018), speech (Chung et al.,
2015; Fraccaro et al., 2016; Goyal et al., 2017; Hsu et al.,
2017; Li & Mandt, 2018), handwriting (Chung et al., 2015),
music (Fraccaro et al., 2016), etc. While these models differ
in their functional mappings, most fall within the general
form of eq. 1. Crucially, simply encoding the observation at
each step is insufficient to accurately perform approximate
inference, as the prior can vary across steps. Thus, with each
deep dynamical latent variable model, a hand–crafted amor-
tized inference procedure has been proposed. For instance,
many filtering inference methods re-use various components
of the generative model (Chung et al., 2015; Fraccaro et al.,
2016; Gemici et al., 2017; Denton & Fergus, 2018), while
some methods introduce separate recurrent neural networks
into the filtering procedure (Bayer & Osendorfer, 2014;
Denton & Fergus, 2018) or encode the previous latent sam-
ple (Karl et al., 2016). Specifying a filtering method has
been an engineering effort, as we have lacked a theoretical
framework.

The variational filtering EM algorithm precisely specifies
the inference optimization procedure implied by the filter-
ing variational objective. The main insight from this anal-
ysis is that, having drawn approximate posterior samples
at previous steps, inference becomes a local optimization,
depending only on the current prior and observation. This
suggests one unified approach that explicitly performs infer-
ence optimization at each step, allowing us to replace the
current collection of custom filtering methods. When the
approximate posterior at each step is initialized at the cor-
responding prior, this approach entails a prediction-update
loop, with the update composed of a gradient (error) signal.

Perhaps the closest technique in the probabilistic modeling
literature is the “residual” inference method from (Fraccaro

et al., 2016), which updates the approximate posterior mean
from the prior. Other similar ideas have been proposed on
an empirical basis for deterministic models (Lotter et al.,
2016; Henaff et al., 2017). PredNet (Lotter et al., 2016)
is a deterministic model that encodes prediction errors to
perform inference. This approach is inspired by predictive
coding (Rao & Ballard, 1999; Friston, 2005), a theory from
neuroscience postulating that feedforward pathways in sen-
sory processing areas of the brain use prediction errors to
update state estimates from prior predictions. In turn, this
theory is motivated by classical Bayesian filtering (Särkkä,
2013), which updates the posterior from the prior using the
likelihood of the prediction. For linear Gaussian models,
this manifests as the Kalman filter (Kalman et al., 1960),
which uses prediction errors to perform exact inference.

Finally, several recent works have used particle filtering, in
conjunction with amortized inference, to provide a tighter
lower bound on the log likelihood for sequential data (Mad-
dison et al., 2017; Naesseth et al., 2017; Le et al., 2017).
The techniques developed here can also be applied to this
tighter bound.

3. Variational Filtering
3.1. Variational Filtering Expectation Maximization

In the filtering setting, the approximate posterior at each step
depends only on past and present variables, enabling online
approximate inference. Making the mean-field assumption
across steps, then q(z≤T |x≤T ) takes the factorized form

q(z≤T |x≤T ) =
T∏
t=1

q(zt|x≤t, z<t). (6)

Note that the conditioning variables in q denote an indi-
rect dependence that arises through free energy minimiza-
tion and does not necessarily constitute a direct functional
mapping. Under a filtering approximate posterior, the free
energy (eq. 3) can be expressed as

F =

T∑
t=1

E∏t−1
τ=1 q(zτ |x≤τ ,z<τ )

[Ft] =
T∑
t=1

F̃t, (7)

(see Appendix A for the derivation) where Ft is the step
free energy, defined as

Ft ≡ −Eq(zt|x≤t,z<t)

[
log

pθ(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

]
, (8)

and we have also defined F̃t as the tth term in the summation.
To gain further intuition, note that with a single step, the
filtering free energy reduces to the first step free energy.
As in the static setting, this term can be re-expressed as
a reconstruction term and a “regularizing” KL-divergence
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Figure 1. Variational filtering EM. Diagram shows filtering inference within a Markov dynamical latent variable model, as detailed in
Algorithm 1. The central gray region depicts inference optimization of the approximate posterior, q(zt|x≤t, z<t), at step t, which can
be initialized at or near the corresponding prior, pθ(zt|x<t, z<t). Sampling from the approximate posterior generates the conditional
likelihood, pθ(xt|x<t, z≤t), which is evaluated at the observation, xt, to calculate the reconstruction error. This term, combined with
the KL divergence between the approximate posterior and prior, comprise the step free energy, Ft (see eq. 9). Inference optimization
(E-step) involves finding the approximate posterior that minimizes the step free energy. Learning (M-step), which is not shown in the
figure, corresponds to updating the model parameters, θ, to minimize the total filtering free energy, F . Note that the figure outlines a
gradient-based inference procedure using red and orange lines. Many previously proposed filtering techniques instead rely on direct
amortized mappings from observations and hidden states, however they are still attempting to optimize the same inference objective.

term:

Ft =− Eq(zt|x≤t,z<t) [log pθ(xt|x<t, z≤t)]
+DKL(q(zt|x≤t, z<t)||pθ(zt|x<t, z<t)).

(9)

The filtering free energy in eq. 7 is the sum of these step
free energy terms, each of which is evaluated according to
expectations over past latent sequences. To perform filtering
variational inference, we must find the set of T terms in
q(z≤T |x≤T ) that minimize the filtering free energy summa-
tion.

We now describe the variational filtering EM algorithm,
given in Algorithm 1 and depicted in Figure 1, which
optimizes eq. 7. This algorithm sequentially optimizes
each of the approximate posterior terms to perform filter-
ing inference. Consider the approximate posterior at step t,
q(zt|x≤t, z<t). This term appears in F , either directly or
in expectations, in terms t through T of the summation:

F = ︸ ︷︷ ︸
steps q(zt|x≤t, z<t) depends on

F̃1 + · · ·+ F̃t−1 +

terms q(zt|x≤t, z<t) appears in︷ ︸︸ ︷
F̃t + F̃t+1 + · · ·+ F̃T . (10)

However, the filtering setting requires that the approxi-

mate posterior at each step can only depend on past and
present variables, i.e. steps 1 through t. Therefore, of the T
terms in F , the only term through which we can optimize
q(zt|x≤t, z<t) is the tth term:

q∗(zt|x≤t, z<t) = argmin
q(zt|x≤t,z<t)

F = argmin
q(zt|x≤t,z<t)

F̃t.

(11)
Optimizing F̃t requires evaluating expectations over previ-
ous approximate posteriors. Again, because approximate
posterior estimates cannot be influenced by future variables,
these past expectations remain fixed through the future.
Thus, filtering variational inference (the variational E-step)
can be performed by sequentially minimizing each Ft w.r.t.
q(zt|x≤t, z<t), holding the expectations over past variables
fixed. Importantly, once the past expectations have been
evaluated or estimated, inference optimization is entirely
defined by the step free energy at the current step.

For simple models, such as linear Gaussian models, these
expectations may be computed exactly. However, in general,
the expectations must be estimated through Monte Carlo
samples from q, with inference optimization carried out us-
ing stochastic gradients (Ranganath et al., 2014). As in the
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Algorithm 1 Variational Filtering Expectation Maximiza-
tion

1: Input: observation sequence x1:T , model
pθ(x1:T , z1:T )

2: ∇θF = 0
3: for t = 1 to T do
4: initialize q(zt|x≤t, z<t) . from pθ(zt|x<t, z<t)
5: F̃t := Eq(z<t|x<t,z<t−1) [Ft]
6: q(zt|x≤t, z<t) = argminq F̃t . inference (E-step)
7: ∇θF = ∇θF +∇θF̃t
8: end for
9: θ = θ − α∇θF . learning (M-step)

static setting, we can initialize q(zt|x≤t, z<t) at (or near)
the prior, pθ(zt|x<t, z<t). This yields a simple interpreta-
tion: starting at the prior, we run the model forward, thereby
generating a prediction, in order to evaluate the free energy
at the current step. Then, using the approximate posterior
gradient, we perform an inference update to the estimate.
This agrees with classical Bayesian filtering, where the pos-
terior is updated from the prior prediction according to the
likelihood of observations. Unlike the classical setting, here,
reconstruction and update steps can be repeated until infer-
ence convergence.

After inferring an optimal approximate posterior, learning
(the variational M-step) can be performed by minimizing
the total filtering free energy w.r.t. the model parameters,
θ. As eq. 7 is a summation and differentiation is a linear
operation, ∇θF is the sum of contributions from each of
these terms:

∇θF =

T∑
t=1

∇θ
[
E∏t−1

τ=1 q(zτ |x≤τ ,z<τ )
[Ft]

]
. (12)

Parameter gradients can be estimated online by accumulat-
ing the result from each term in the filtering free energy.
The parameters are then updated at the end of the sequence.
For large data sets, stochastic estimates of parameter gra-
dients can be obtained from a mini-batch of data examples
(Hoffman et al., 2013).

3.2. Amortized Variational Filtering

Performing approximate inference optimization (Algorithm
1, Line 6) with traditional techniques can be computa-
tionally costly, requiring many iterations of gradient up-
dates and hand-tuning of optimizer hyper-parameters. In
online settings, particularly with large models and data
sets, this may be impractical. An alternative approach
is to employ an amortized inference model, which can
learn to minimize Ft w.r.t. q(zt|x≤t, z<t) more effi-
ciently at each step. Note that Ft (eq. 8) contains
pθ(xt, zt|x<t, z<t) = pθ(xt|x<t, z≤t)pθ(zt|x<t, z<t).

The prior, pθ(zt|x<t, z<t), varies across steps, constitut-
ing the latent dynamics. Standard inference models (eq. 4),
which only encode xt, do not have access to the prior and
therefore cannot properly optimize q(zt|x≤t, z<t). Many
inference models in the sequential setting attempt to account
for this information by including hidden states or encoding
previous latent samples, e.g. (Chung et al., 2015; Fraccaro
et al., 2016; Denton & Fergus, 2018). However, given the
complexities of many generative models, it can be difficult
to determine how to properly route the necessary prior in-
formation into the inference model to perform inference
optimization. As a result, each dynamical latent variable
model has been proposed with an accompanying custom
inference model set-up.

We propose a simple and general alternative method for
amortizing filtering inference that is agnostic to the particu-
lar form of the generative model. Iterative inference models
(Marino et al., 2018) naturally account for the changing
prior through the approximate posterior gradients. These
models are thus a natural candidate for performing infer-
ence at each step. Similar to eq. 5, when q(zt|x≤t, z<t) is
a parametric distribution with parameters λqt , the inference
update takes the form:

λqt ← fφ(λ
q
t ,∇λqt

F̃t). (13)

We refer to this set-up as amortized variational filtering
(AVF). As in eq. 5, we note that eq. 13 offers just one
particular encoding form for an iterative inference model.
For instance, xt could be additionally encoded at each step.
Marino et al. also note that in latent Gaussian models,
precision-weighted errors provide an alternative inference
optimization signal (Marino et al., 2018). There are two
main benefits to using iterative inference models in the
filtering setting:

• These models contain all of the terms necessary to
perform inference optimization, providing a simple
model form that does not require any additional states
or inputs.

• The approximate posterior is updated from the prior,
so model capacity is utilized for inference corrections
rather than re-estimating the approximate posterior at
each step.

In practice, these advantages permit the use of relatively
simple iterative inference models that can perform filtering
inference efficiently and accurately. We demonstrate this in
the following section.

4. Experiments
We empirically evaluate amortized variational filtering us-
ing multiple deep dynamical latent Gaussian model ar-
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(a) VRNN (Inference) (b) SRNN (Inference) (c) SVG (Inference) (d) AVF

Figure 2. Inference computation graphs for originally proposed filtering methods for (a) VRNN, (b) SRNN, and (c) SVG. Each diagram
shows the procedure for inferring the approximate posterior parameters, λqt , at step t. Previously proposed methods (a – c) rely on
hand-crafted architectures of observations, hidden states, and latent variables. AVF (d) is a general filtering method that only requires the
current approximate posterior estimate and gradient (see eq. 13) to explicitly optimize F̃t, the current expected step free energy.

(a) (b)

Figure 3. Improvement with inference iterations. (a) Average free energy per step using VRNN on TIMIT (validation set) for AVF with
varying numbers of inference iterations during training. Additional iterations lead to improved performance. (b) Relative improvement
(decrease) in free energy at each inference iteration for the same model during training. The initial inference iteration results in a large
improvement over the prior estimate. Successive inference iterations provide further, smaller improvements.

chitectures on a variety of sequence data sets. Specifi-
cally, we use AVF to train VRNN (Chung et al., 2015),
SRNN (Fraccaro et al., 2016), and SVG (Denton & Fergus,
2018) on speech (Garofolo et al., 1993), music (Boulanger-
Lewandowski et al., 2012), and video (Schuldt et al.,
2004) data. In each setting, we compare AVF against
the originally proposed filtering method for the model.
Diagrams of the filtering methods are shown in Figure
2. Implementations of the models are based on code
provided by the respective authors of VRNN1, SRNN2,
and SVG3. Accompanying code can be found on GitHub
at https://github.com/joelouismarino/amortized-variational-
filtering.

1https://github.com/jych/nips2015 vrnn
2https://github.com/marcofraccaro/srnn
3https://github.com/edenton/svg

4.1. Experiment Set-Up

Iterative inference models are implemented as specified
in eq. 13, encoding the approximate posterior parameters
and their gradients at each inference iteration at each step.
Following (Marino et al., 2018), we normalize the inputs
to the inference model using layer normalization (Ba et al.,
2016). The generative models that we evaluate contain
non-spatial latent variables, thus, we use fully-connected
layers to parameterize the inference models. Importantly,
minimal effort went into engineering the inference model
architectures: across all models and data sets, we utilize the
same inference model architecture for AVF. Further details
are found in Appendix B.

https://github.com/joelouismarino/amortized-variational-filtering
https://github.com/joelouismarino/amortized-variational-filtering
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Figure 4. Test data (top), output predictions (middle), and recon-
structions (bottom) for TIMIT using SRNN with AVF. Sequences
run from left to right. The predictions made by the model already
contain the general structure of the data. AVF explicitly updates
the approximate posterior from the prior prediction, focusing on
inference corrections rather than re-estimation.

4.1.1. SPEECH MODELING

Models For speech modeling, we use VRNN and SRNN,
attempting to keep the model architectures consistent with
the original implementations. The most notable difference
in our implementation occurs in SRNN, where we use an
LSTM rather than a GRU as the recurrent module. As in
(Fraccaro et al., 2016), we anneal the KL divergence initially
during training. In both models, we use a Gaussian output
density. Unlike (Chung et al., 2015; Fraccaro et al., 2016;
Goyal et al., 2017), which evaluate log densities, we evaluate
and report log probabilities by integrating the output density
over the data discretization window, as in modeling image
pixels. This permits comparison across different output
distributions.

Data We train and evaluate on TIMIT (Garofolo et al.,
1993), which consists of audio recordings of 6,300 sentences
spoken by 630 individuals. As performed by (Chung et al.,
2015), we sample the audio waveforms at 16 kHz, split the
training and validation sets into half second clips, and group
each sequence into bins of 200 consecutive samples. Thus,
each training and validation sequence consists of 40 model
steps. Test evaluation is performed on the full duration of
each test sequence, averaging roughly 3 seconds.

4.1.2. MUSIC MODELING

Model We model polyphonic music using SRNN. The
generative model architecture is the same as in the speech
modeling experiments, with changes in the number of layers
and units to match (Fraccaro et al., 2016). To model the
binary music notes, we use a Bernoulli output distribution.
Again, we anneal the KL divergence initially during training.

Data We use four data sets of polyphonic (MIDI) mu-
sic (Boulanger-Lewandowski et al., 2012): Piano-midi.de,
MuseData, JSB Chorales, and Nottingham. Each data set
contains between 100 and 1,000 songs, with each song be-
tween 100 to 4,000 steps. For training and validation, we
break the sequences into clips of length 25, and we test on
the entire test sequences.

4.1.3. VIDEO MODELING

Model Our implementation of SVG differs from the orig-
inal model in that we evaluate conditional log-likelihood
under a Gaussian output density rather than mean squared
output error. All other architecture details are identical to the
original model. However, (Denton & Fergus, 2018) down-
weight the KL-divergence by a factor of 1e-6 at all steps.
We instead remove this factor to use the free energy during
training and evaluation. As to be expected, this results in
the model using the latent variables to a lesser extent. We
also train and evaluate SVG using filtering inference at all
steps, rather than predicting multiple steps into the future.

Data We train and evaluate SVG on KTH Actions
(Schuldt et al., 2004), which contains 760 train / 768 val /
863 test videos of people performing various actions, each
of which is between roughly 50 - 150 frames. Frames are
re-sized to 64 × 64. For training and validation, we split the
data into clips of 20 frames.

4.2. Results

4.2.1. ADDITIONAL INFERENCE ITERATIONS

The variational filtering EM algorithm involves approximate
posterior optimization (Algorithm 1, Line 6). AVF handles
this optimization through a model that learns to perform
iterative updates (eq. 13). Thus, additional inference itera-
tions can potentially lead to further inference improvement.
We explore this aspect on TIMIT using VRNN. In Figure
3a, we plot the average free energy on validation sequences
for varying numbers of inference iterations during training.
Figure 3b shows relative inference improvement over the
prior estimate for a single model throughout training. Addi-
tional inference iterations improve performance, with each
iteration providing a slight improvement. Note that this
aspect is distinct from many baseline filtering methods for
deep dynamical latent variable models, which do not permit
multiple inference iterations per step.

Figure 4 illustrates example reconstructions over inference
iterations, using SRNN on TIMIT. At the initial inference
iteration, the approximate posterior is initialized from the
prior, resulting in an output prediction at iteration 0. The
approximate posterior is updated at the following inference
iteration, improving the output reconstruction by adjusting
the parameters of the Gaussian conditional likelihood.
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Table 1. Average free energy (in nats per step) on the TIMIT
speech data set for SRNN and VRNN with the respective pro-
posed filtering procedures and with AVF.

TIMIT
VRNN

baseline 1,082
AVF 1,071

SRNN
baseline 1,026
AVF 1,024

Table 2. Average free energy (in nats per step) on the KTH Ac-
tions video data set for SVG with the proposed filtering procedure
and with AVF.

KTH Actions
SVG

baseline 15,097
AVF 11, 714

Table 3. Average free energy (in nats per step) on polyphonic music data sets for SRNN with and without AVF. Results from (Fraccaro
et al., 2016) are provided for comparison, however, our implementation of SRNN differs in several aspects (see Appendix B).

Piano-midi.de MuseData JSB Chorales Nottingham
SRNN

baseline (Fraccaro et al., 2016) 8.20 6.28 4.74 2.94
baseline 8.19 6.27 6.92 3.19
AVF 8.12 5.99 6.77 3.13

4.2.2. QUANTITATIVE COMPARISON

Tables 1, 2, and 3 present quantitative comparisons of aver-
age filtering free energy between AVF and baseline filtering
methods for TIMIT, KTH Actions, and the polyphonic mu-
sic data sets respectively. On TIMIT, training with AVF per-
forms comparably or slightly better than using the baseline
methods for both VRNN and SRNN. Similar improvements
are also observed on each of the polyphonic music data
sets. AVF significantly improves the performance of SVG
on KTH Actions. We attribute this, in part, to the absence of
the KL down-weighting factor in our training objective. The
baseline filtering procedure seems to struggle to a greater
degree than AVF.

5. Conclusion
We introduced the variational filtering EM algorithm for
filtering in dynamical latent variable models. We noted that
filtering inference can be expressed as a sequence of opti-
mization objectives, linked across steps through previous
latent samples. Using iterative inference models to perform
inference optimization, we arrived at an efficient imple-
mentation of the algorithm: amortized variational filtering.
This general filtering algorithm scales to large models and
data sets. Numerous methods have been proposed for fil-
tering in deep dynamical latent variable models, with each
method hand-crafted for each model. The variational filter-
ing EM algorithm provides a framework for analyzing and
constructing these methods. Amortized variational filtering
is a simple, theoretically-motivated, and general filtering
method that we have shown performs on-par with or better
than multiple existing state-of-the-art methods.
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A. Filtering Variational Free Energy
A.1. Derivation

This derivation largely follows that of (Gemici et al., 2017) and is valid for factorized filtering approximate posteriors. From
eq. 3, we have the definition of variational free-energy:

F ≡ −Eq(z≤T |x≤T )

[
log

pθ(x≤T , z≤T )

q(z≤T |x≤T )

]
. (1)

Plugging in the forms of the joint distribution (eq. 1) and approximate posterior (eq. 6), we can write the term within the
expectation as a sum:

F =− Eq(z≤T |x≤T )

[
log

(
T∏
t=1

p(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

)]
(2)

F =− Eq(z≤T |x≤T )

[
T∑
t=1

log
p(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

]
(3)

F =− Eq(z≤T |x≤T )

[
T∑
t=1

Ct

]
(4)

where the term Ct is defined to simplify notation. We then expand the expectation:

F = −Eq(z1|x1) . . .Eq(zT |x≤T ,z<T )

[
T∑
t=1

Ct

]
(5)

There are T terms within the sum, but each Ct only depends on the expectations up to time t because we only condition on
past and present variables. This allows us to write:

F =− Eq(z1|x1) [C1]

− Eq(z1|x1)Eq(z2|x≤2,z1) [C2]

− . . .

− Eq(z1|x1)Eq(z2|x≤2,z1) . . .Eq(zT |,x≤T ,z<T ) [CT ] (6)

F =−
T∑
t=1

Eq(z≤t|x≤t) [Ct] (7)

F =−
T∑
t=1

E∏t
τ=1 q(zτ |x≤τ ,z<τ )

[Ct] (8)

F =−
T∑
t=1

E∏t−1
τ=1 q(zτ |x≤τ ,z<τ )

[
Eq(zt|x≤t,z<t) [Ct]

]
(9)

As in Section 3, we define Ft as

Ft ≡ −Eq(zt|x≤t,z<t) [Ct] (10)

Ft = −Eq(zt|x≤t,z<t)

[
log

pθ(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

]
. (11)

This allows us to write eq. 9 as

F =

T∑
t=1

E∏t−1
τ=1 q(zτ |x≤τ ,z<τ )

[Ft] , (12)

which agrees with eq. 7.



B. Implementation Details
For all iterative inference models, we follow (Marino et al., 2018), using two layer fully-connected networks with 1,024
units per layer, highway gating connections (Srivastava et al., 2015), and ELU non-linearities (Clevert et al., 2015). Unless
otherwise noted, these models receive the current estimate of the approximate posterior and approximate posterior gradient
(4 terms in total), normalizing each term separately using layer normalization (Ba et al., 2016). We use the same output
gating update employed in (Marino et al., 2018). We also found that applying layer normalization to the approximate
posterior mean estimates resulted in improved training stability.

B.1. Speech Modeling

The VRNN architecture is implemented as in (Chung et al., 2015), matching the number of layers and units in each
component of the model, as well as the non-linearities. We train on TIMIT with sequences of length 40, using a batch size
of 64. For the baseline method, we use a learning rate of 0.001, as specified in (Chung et al., 2015). For AVF, we use a
learning rate of 0.0001. We anneal the learning rates by a factor of 0.999 after each epoch. For quantitative (test) results, we
used 2 inference iterations for AVF.

We implement SRNN following (Fraccaro et al., 2016), with the exception of an LSTM in place of the GRU. All other
architecture details, are kept consistent, including the use of clipped (±3) leaky ReLU non-linearities. The sequence length
and batch size are the same as above. We use a learning rate of 0.001 for the baseline method, following (Fraccaro et al.,
2016). We use a learning rate of 0.0001 for AVF. We use the same learning rate annealing strategy as above. Following
(Fraccaro et al., 2016), we anneal the KL-divergence of the baseline linearly over the first 20 epochs. We increase this
duration to 50 epochs for AVF. The iterative inference model additionally encodes the data observation at each step, which
we found necessary to overcome the local minima from the KL-divergence. We use a single inference iteration for AVF.

B.2. Music Modeling

Our SRNN implementation is the same as in the speech modeling setting, with the appropriate changes in the number of
units and layers to match (Fraccaro et al., 2016). We use a sequence length of 25 and a batch size of 16. All models are
trained with a learning rate of 0.0001, with a decay factor of 0.999 per epoch. We anneal the KL-divergence linearly over
the first 50 epochs. Models trained with AVF using a single inference iteration, except with JSB Chorales, where we use 5
inference iterations.

B.3. Video Modeling

The SVG model architecture is implemented identically to (Denton & Fergus, 2018), with the addition of a variance term to
the observation model to account for uncertainty in the output. We train on sequences of length 20 using a batch size of
20. For both methods, we use a learning rate of 0.0001, with decay of 0.999 after each epoch. We use a single inference
iteration for AVF.

References
Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Chung, Junyoung, Kastner, Kyle, Dinh, Laurent, Goel, Kratarth, Courville, Aaron C, and Bengio, Yoshua. A recurrent latent
variable model for sequential data. In Advances in neural information processing systems, pp. 2980–2988, 2015.
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