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REINFORCEMENT LEARNING



Reinforcement Learning

sequential decision making
by maximizing expected future reward

maximize rewards w.r.t. actions
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Reinforcement Learning

sequential decision making
by maximizing expected future reward

maximize rewards w.r.t. actions

) ax o o )

requires some way of estimating

or evaluating future outcomes

* environment itself

e simulator

e |earned value function

e |earned simulator, i.e. a model
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Reinforcement Learning

a model of what?

proprioception/kinematics

object manipulation

A

can be anything, as long as you
define the state / action spaces




Reinforcement Learning
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Motivation

models are general (not task specific)
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© reward for task A ¢ reward for task B

if the reward is known, can use the same model!



Motivation

models can be easier to learn

4 )

Q. can just estimate 1-step dynamics

...whereas learning a value function
requires an expectation over future steps




Motivation

may be better suited for certain environments

e.g., board games have simple dynamics,
but a large number of possible outcomes

10 Silver et al., 2016



Motivation

easier to incorporate expert knowledge

Neural Lander

model dynamics with physics,
and only use learning for cases that are difficult to model (e.g., near the ground)

11 Shi et al., 2019



Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately
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Motivation

can use new information more immediately

« possibly useful in
online/data collection setting
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MODEL-BASED
REINFORCEMENT LEARNING
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Model-Based RL
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t

a model is an approximation of Penv(S1.7|a1.7)

and maybe 7(s;, a;)

we will refer to the model as py(si.7|ar.7)
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Model-Class & Learning

two main considerations for a generative model

. (e )
e distribution family
e family & dependency structure 4 4
e function(s) €9 > —o— oo
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e.g., Mi+1 = NNog(ss,ay) T .
[
\ J
. L (learning obiecti )
* |earning objective Sarning ORIecve -
e typically cross-entropy mgXEpenv(s|-) log po(s|-)] I
1 >
\ J

23



The 1-Step Model

factorize into a product of 1-step transition probabilities

Pe(SlzT\alzT) = HPG(St’St—la at—l)
t

parameterize each 1-step transition with a simple distribution

pe(St’St—h at—l) = N(St§ Mt diag(af))
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Policy Optimization

maximize expected sum of rewards w.r.t. policy
® (from model)

OPTIMIZERS:

( Random Shooting .>
§ choose best random sample ® ...
S—
§ ¢ o
5 | Cross Entropy Method (CEM) . ® A ®
o o e et Y
o iteratively re-fit policy to best samples g o ¢® - > ..:. - >
\ ® o0 o 0%,
o ©®
< [ Gradient Ascent / Descent » @
O A PRRS
_éé optimize policy directly T = g 'A - -
Q0 )
S | Policy Network
S optimize parameters of a network that outputs policy

\o-o
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Open vs. Closed Loop Optimization

ﬂ)pen loop
plan once, then execute
MODEL ENVIRONMENT
( [ J [ ] [ ] \ [ [ ] [ ] [ ] \
. )§ § _ ->
K\ J - J
[ closed loop (model predictive control)
re-plan / execute at each time step
MODEL ENVIRONMENT MODEL
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Online vs. Offline

Planning: model as online simulator

MODEL ENVIRONMENT MODEL
( [ ] [ ] [ ] \ ( [ ] \ ( [ ] [ ] \
. | 5. 3 ) ’ ’
C ) U ) U Y
6YNA: model as offline simulator Sutton, 1991)
MODEL MODEL-FREE RL ENVIRONMENT
- ; N ; N ; T
' § § A AN B AN AN
_ ) U ) U Y

can use any model-free RL algorithm

AN
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DEEP MODEL-BASED
REINFORCEMENT LEARNING
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Deep Model-Based RL

parameterize the model using a deep neural network

typical example: 1-step model
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e.g., N(St+1; 1o, diag(ag))
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Generative Modeling

recent advances in generative models
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ENERGY-BASED MODELS
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Generative Modeling

recent advances in generative models
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note: these are only possible examples



Modeling Reward

to estimate value, need some estimate of future reward/value

4 can use the same maximum likelihood approach )
STANDARD SETTING LATENT STATE SETTING
a P a P
Or(s,a) e Or(s,a) @
S Z
>, 3
\ deep networ/( deep networ/y

or assume we have access to the reward function
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Practical Aspects of Deep MBRL

modeling state changes

states often change smoothly + dynamics generalize across states

4 ) a S 4
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e.g., with N(si11; po, diag(o3))

estimate change in state: /\@, po =S¢ + 0p(s¢, ay)
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Practical Aspects of Deep MBRL

many robotic applications involve joint angles

A

<> > restricted to 0 to 2m

21t
/ results in discontinuities in state trajectories

one approach: ¢ — [sin ¢, cos ¢

34 see Chua et al., 2018)



Practical Aspects of Deep MBRL

a single distribution may not capture the
uncertainty in the model’s estimate

ensemble of networks (see Chua et al., 2018)
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epistemic (knowledge) uncertainty may be multi-modal,

even if aleatoric (inherent) uncertainty is not
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Practical Aspects of Deep MBRL

issues with training on collected data

catastrophic forgetting exploration / uncertainty
Geep networks struggle with non-I.1.D. dat) ( may avoid states with inaccurate \
forget earlier examples when training online reward / dynamics estimates
BUFFER AGENT ENV @
OO

B REPLAY |ﬁ| COLLECT lﬁl

initially collect large amount of random data
+ use action, value, and/or state exploration

- J J

use a large replay buffer of recent samples
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SURVEY
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Nagabandi et al. 2017

single 1-step model

planning (MPC) with random shooting

perform imitation learning on planned actions to initialize model-free agent

DATA POINTS
(si» @i, Siy1)

v

DRL

DRAND

AGENT
UPDATED
STATE INFO
NEURAL NETWORK
DYNAMICS MODEL \
fo MPC
CONTROLLER
(GOAL) /
REWARD
FUNCTION

SELECTED
ACTION
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P ETS (Probabilistic Ensembles with Trajectory Sampling)

—— Ground Truth
—— Bootstrap 1
Bootstrap 2

uses ensembles (bootstraps) of 1-step models «  Training Data jia

planning + CEM + various sampling strategies

—

(a) Cartpole (b) 7-dof Pusher

N Eﬁ continuous control

(c) 7-dof Reacher (d) Half-cheetah

39 Chua et al., 2018



M B PO (Model-Based Policy Optimization)

Dyna-style training with model ensemble and (model-free) actor-critic setup
Very short rollouts for model-based value estimation

Continuous control

environment

model

40 Janner et al., 2019



World Models

Dyna-style training with evolutionary policy

Uses a sequential latent variable model

Discrete actions [ environment ]« ——
{ action
z 7z
observation ! g
o
world model | MDN-RNN (M) —
RS t ------------- - action |

41 Ha & Schmidhuber, 2018



World Models

Input Image 64x64x3

relu conv 32x4
31x31x32
relu conv 64x4

the model (vision):

14x14x64
compress the observations la conv 1284

6x6x128

relu conv 256x4
Original Observed Frame Reconstructed Frame

2x2x256

L ] [ )

Encoder @—' Decoder

T z=p+0oN(@O,1)
dense

1x1x1024

relu deconv 128x5

5x5x128

relu deconv 64x5

13x13x64

relu deconv 32x6
30x30x32
sigmoid deconv 3x6

Reconstruction 64x64x3

42 Ha & Schmidhuber, 2018



World Models

observations reconstructions

Ha & Schmidhuber, 2018



PlaNet

Similar model as World Models
Uses planning with CEM

Continuous control from visual inputs

the model:

44 Hafner et al., 2019



PlaNet
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PlaNet

observations

predictions

46 Hafner et al., 2019



Imagined Value Gradient

Observations H yH+ FHFL V2 AH42 VHN

T i

Latent from encoder T T T

Latent from transition

P e 7 / p @
Model components
Model predictions mo(.[h) - - p [ g mo(-|h) - - » @1
Sampled actions (' \ / \
.

/
hl h2 hH —_— ftrans —_— hH+1 — ftrans —_ hH+2 — s o — hH+N
t t t 3 S WHY _ AH (A
Hy _ vN H Vith™) =7r" +~4V

fenc o fenc - = fenc VN(h ) _ Z/stzl‘/k(h ) ~1( ) i A

Model-based Value estimate, V2 (hH) o 'fH _|_ A//TH+1 + 72 VWH+2

averaged over N imagined rollouts
f length 1-N

o! o2 ol ot leng

Uses a latent space learned through reconstruction/prediction
Uses a policy network for policy optimization

Continuous control

47 Byravan et al., 2019



MuZero

Just predict the future reward, actions, and values

- mapping from observations to latent state (h) L N m

v

- latent dynamics (g)

- mapping from latent state to predictions (f) /4

Monte Carlo Tree Search for policy optimization

discrete actions spaces

48 Schrittwieser et al., 2019



Model-Based Meta-Learning

N "

dynamically allocate new models as the environment dynamics change

can adapt to changes online

1-step models with MPC planning

49 Nagabandi et al., 2019



Gamma Models

single-step model: At = 1 ~-model: At ~ Geom(1 — )

I/ | MY

current state prediction
predict the future state distribution instead of just the next state

Rewards ~-model predictions Value estimates Ground truth
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£
3
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< 4 O 4k «
o
-8
0 ™ o2n 0 T 27 0 ™ 27 0 ™ 2w 0 ™ 2 0 m 2m
angle (rad) ——————angle (rad) —— angle (rad) angle (rad)

see also successor representation (Dayan, 1993)

50 Janner et al., 2020



Other papers...

PILCO (Diesenroth, et al., 2013)

stochastic value gradient (Heess, Wayne, et al., 2015)
AlphaGo (Silver et al., 2016)

Imagination Augmented Agents (Weber et al., 2017)
Predictron (Silver et al., 2017)

POPLIN (Wang & Ba, 2019)

on the model-based stochastic value gradient (Amos et al, 2020)

see list of references from Hamrick / Mordatch tutorial

51 Janner et al., 2020



CONSIDERATIONS & OPEN ISSUES
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Objective Mismatch

generative modeling # reward maximization

A A
pdata(s) exXp 7Q(S)
> >
S S
generative modeling but not every state has
weights states according the same importance for
to their frequency the overall task

this objective mismatch can result in sub-optimal final performance
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Computation

(model-based rollouts are more costly for training / policy optimization

(e . o ) (e )
Qnr
MB | &) ] vs. MF
\_ J \_ J
\ typically require a value function anyway when using short rollout horizon

Generally requires more action samples
due to higher variance estimates

Trajectory Propagation

a8 @ MB: ~10s of samples

MF: often 1 sample

\ Chua et al., ZOW

54

Gstillation (MB —> MF)

dyna: use model as simulator for entire
MF algorithm

e.g., ME-TRPO, World Models, etc.

value estimator: use model to estimate
gradients for policy/value network

e.g., MVE / STEVE, Dreamer, etc.

\ MBPO does both

AN




Combining MB + MF

we're still trying to understand where and how models should be used

(Use model to estimate target values

model-based value expansion (MVE) (Feinberg et al., 2018),
stochastic ensemble value expansion (STEVE) (Buckman et al., 2018)
model-based policy optimization (MBPO) (Janner et al., 2019)

TD loss: (Qw<St, at) — T(St, at) — VEW,penV [er (St—|-17 at—i—l)])Q

~

@cectively using model to estimate lower-bias Monte Carlo returns

future value \ § § §
........ A

(Use model to estimate policy gradients

imagined value gradients (Byravan et al., 2019),
dreamer (Hafner et al., 2020)
Qr(St,a)

again, using model to estimate Monte
A e Carlo returns, but now distilled into a

policy network

o
o
o
o
o
o
(]

O, -
0
0
0
’ 0
. 0
~. (0o

~/
~
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Temporal Abstraction

~

with a 1-step model, we are limited to planning at the sensing/environment frequenc)

(o

N\

for long-horizon tasks, planning becomes computation infeasible

~

Guccessor representations

estimate long-term average state distribution

Rewards ~-model predictions Value estimates Ground truth

angular velocity (rad / s)
X
.
J
|

2m 0 T 2r
angle (rad)

0 ™ @ 0 w 20 w 20 7w 21 0
angle (rad) ————angle (rad) ————

zero-shot long-term predictions...
but restricted to current policy

™
angle (rad)

\_

J
Gptions, hierarchical RL )

form a temporally sub-sampled latent space

high-level @ 0.1 Hz

so

9 h
o
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|

g, —— eee _h g..,
3 e
\1 AN
Environment

} ! ! !

Ro R1 Rc-1 Rc

low-level @ 1 Hz

...but often inflexible

Janner et al.,, ZOZy
5

K Nachum et al., 201y
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PROJECT IDEAS
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Dynamics Distribution Family

explore the effect of modifying the distribution family/factorization

A

Gaussian (diagonal or full covariance)
Other exponential density (Laplace?)
Mixture of Gaussians

Flow-Based distribution
°* efc.
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Rollout Length

explore the effect of changing the rollout length

e analyze bias and variance of model’s value estimate w.r.t. the true environment
e compare performance

e dynamically set rollout length? (see STEVE (Buckman et al., 2018))
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Model Ensembles

explore the effect of using ensembles of models

e how does performance vary with ensemble size?
e explore different sampling strategies for rollouts (see PETS (Chua et al., 2018))

e visualize cases where model ensembling helps with estimating uncertainty

St ———»

— p9(5t+t\5t7 at)

\0opoo0o0

A —»

0000000
0000000
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Policy Optimizer

compare various policy optimizers in the context of a model-based value estimator

e compare accuracy and efficiency
e does better optimization accuracy lead to better performance?

e can optimizers be combined?

. P
.. .. o
- — —> - - —>
® 0 O ’0 ®
° p
e o 0%,y
o ©
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Model-Based Generalization

demonstrate task generalization with a model

e explore a multi-task setting in a particular environment, train a model on
a subset of tasks and transfer to other tasks

e how well does the model generalize across tasks with varying similarity?

Ko ° o\ [o 0\

© reward for task A @ reward for task B
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Model-Based + Model-Free

combine model-based and model-free algorithms

e use model-based value targets (MVE, STEVE)

e explore various target estimation schemes (Monte Carlo, Retrace, etc.)

e use model-based policy gradients (Dreamer)

e use both (Dyna, MBPQO)

e some other combination? e.g. distill via imitation learning (Nagabandi et al., 2017)

MODEL MODEL-FREE RL ENVIRONMENT
[ [ ] [ ] [ ] \ [ ® [ ] [ ] \ [ [ ] [ ] [ ] \
' ) ) VT IS
- J - J - J
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Additional Resources

Hamrick / Mordatch tutorial on MBRL: https://sites.google.com/view/mbrl-tutorial

— very thorough set of references

On the role of planning in MBRL (Hamrick et al., 2021)
Benchmarking MBRL (Wang et al., 2019)

Lambert blog post on Debugging MBRL: https://www.natolambert.com/writing/debugging-mbrl
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