Model-Based Deep Reinforcement Learning

Joseph Marino

REINFORCEMENT LEARNING

sequential decision making by maximizing expected future reward

maximize rewards w.r.t. actions

sequential decision making by maximizing expected future reward

actions

requires some way of estimating or evaluating future outcomes

- environment itself
- simulator
- learned value function
- learned simulator, i.e. a model

🔵 states, rewards 🤷

maximize rewards w.r.t. actions

maximize
$$\sum_{t} \bullet$$
 w.r.t. \bigcirc , \bigcirc , ...

sequential decision making by maximizing expected future reward

actions

requires some way of estimating or evaluating future outcomes

- environment itself
- simulator
- learned value function
- learned simulator, i.e. a model

states, rewards

maximize rewards w.r.t. actions

maximize
$$\sum_{t} \bullet$$
 w.r.t. \bigcirc , \bigcirc , ...

a model of what?

proprioception/kinematics

object manipulation

can be anything, as long as you define the state / action spaces

travel

models are general (not task specific)

if the reward is known, can use the **same** model!

models can be easier to learn

can just estimate 1-step dynamics

...whereas learning a value function requires an expectation over future steps

may be better suited for certain environments

e.g., board games have simple dynamics, but a large number of possible outcomes

easier to incorporate expert knowledge

Neural Lander

model dynamics with physics, and only use learning for cases that are difficult to model (e.g., near the ground)

11 Shi et al., 2019

MODEL-BASED REINFORCEMENT LEARNING

Model-Based RL

$$ightharpoonup r(\mathbf{s}_t, \mathbf{a}_t) \in \mathbb{R}$$

$$\bullet$$
 $\pi(\mathbf{a}_t|\cdot)$

$$p_{\text{env}}(\mathbf{s}_t|\mathbf{s}_{t-1},\mathbf{a}_{t-1})$$

$$p_{\text{env}}(\mathbf{s}_{1:T}|\mathbf{a}_{1:T}) = \prod_{t} p_{\text{env}}(\mathbf{s}_{t+1}|\mathbf{s}_{t},\mathbf{a}_{t})$$

a model is an approximation of $p_{\mathrm{env}}(\mathbf{s}_{1:T}|\mathbf{a}_{1:T})$ and maybe $r(\mathbf{s}_t,\mathbf{a}_t)$

we will refer to the model as $p_{\theta}(\mathbf{s}_{1:T}|\mathbf{a}_{1:T})$

Model-Class & Learning

two main considerations for a generative model

- distribution
 - family & dependency structure
 - function(s)

- learning objective
 - typically cross-entropy

The 1-Step Model

factorize into a product of 1-step transition probabilities

$$p_{\theta}(\mathbf{s}_{1:T}|\mathbf{a}_{1:T}) = \prod_{t} p_{\theta}(\mathbf{s}_{t}|\mathbf{s}_{t-1},\mathbf{a}_{t-1})$$

parameterize each 1-step transition with a simple distribution

$$p_{\theta}(\mathbf{s}_t|\mathbf{s}_{t-1},\mathbf{a}_{t-1}) = \mathcal{N}(\mathbf{s}_t;\boldsymbol{\mu}_t,\operatorname{diag}(\boldsymbol{\sigma}_t^2))$$

Policy Optimization

maximize expected sum of rewards w.r.t. policy (from model) **OPTIMIZERS:** Random Shooting gradient-free choose best random sample Cross Entropy Method (CEM) iteratively re-fit policy to best samples Gradient Ascent / Descent gradient-based optimize policy directly Policy Network optimize parameters of a network that outputs policy

Open vs. Closed Loop Optimization

Online vs. Offline

Planning: model as online simulator

MODEL

ENVIRONMENT

MODEL

OUT

MODEL

MOD

DEEP MODEL-BASED REINFORCEMENT LEARNING

Deep Model-Based RL

parameterize the model using a *deep* neural network

typical example: 1-step model

Generative Modeling

recent advances in generative models

ENERGY-BASED MODELS

SCORE-BASED MODELS

Generative Modeling

recent advances in generative models

note: these are only possible examples

Modeling Reward

to estimate value, need some estimate of future reward/value

or assume we have access to the reward function

modeling state changes

states often change smoothly + dynamics generalize across states

e.g., with
$$\mathcal{N}(\mathbf{s}_{t+1}; \boldsymbol{\mu}_{ heta}, \operatorname{diag}(\boldsymbol{\sigma}_{ heta}^2))$$

estimate *change* in state:

$$\mathbf{a}_t$$
 $\boldsymbol{\sigma}_{ heta}(\mathbf{s}_t, \mathbf{a}_t)$

many robotic applications involve joint <u>angles</u>

restricted to 0 to 2π

results in discontinuities in state trajectories

one approach:
$$\phi \to [\sin \phi, \cos \phi]$$

a single distribution may not capture the *uncertainty* in the model's estimate

ensemble of networks (see Chua et al., 2018)

<u>epistemic</u> (knowledge) uncertainty may be multi-modal, even if <u>aleatoric</u> (inherent) uncertainty is not

issues with training on collected data

catastrophic forgetting

deep networks struggle with non-I.I.D. data, 'forget' earlier examples when training online

use a large <u>replay buffer</u> of recent samples

exploration / uncertainty

may avoid states with inaccurate reward / dynamics estimates

initially collect large amount of random data + use action, value, and/or state exploration

SURVEY

Nagabandi et al. 2017

single 1-step model

planning (MPC) with random shooting

perform imitation learning on planned actions to initialize model-free agent

PETS (Probabilistic Ensembles with Trajectory Sampling)

uses ensembles (bootstraps) of 1-step models

planning + CEM + various sampling strategies

continuous control

MBPO (Model-Based Policy Optimization)

Dyna-style training with model ensemble and (model-free) actor-critic setup

Very short rollouts for model-based value estimation

Continuous control

World Models

Dyna-style training with evolutionary policy

Uses a sequential latent variable model

Discrete actions

World Models

the model (vision):

compress the observations

World Models

observations

reconstructions

PlaNet

Similar model as World Models

Uses planning with CEM

Continuous control from visual inputs

PlaNet

PlaNet

observations

predictions

Imagined Value Gradient

Uses a latent space learned through reconstruction/prediction

Uses a policy network for policy optimization

Continuous control

MuZero

Just predict the future reward, actions, and values

- mapping from observations to latent state (h)
- latent dynamics (g)
- mapping from latent state to predictions (f)

Monte Carlo Tree Search for policy optimization discrete actions spaces

Model-Based Meta-Learning

dynamically allocate new models as the environment dynamics change

can adapt to changes online

1-step models with MPC planning

Gamma Models

single-step model: $\Delta t = 1$

predict the future state distribution instead of just the next state

see also successor representation (Dayan, 1993)

Other papers...

```
PILCO (Diesenroth, et al., 2013)
stochastic value gradient (Heess, Wayne, et al., 2015)
AlphaGo (Silver et al., 2016)
Imagination Augmented Agents (Weber et al., 2017)
Predictron (Silver et al., 2017)
POPLIN (Wang & Ba, 2019)
on the model-based stochastic value gradient (Amos et al, 2020)
see list of references from Hamrick / Mordatch tutorial
```

CONSIDERATIONS & OPEN ISSUES

Objective Mismatch

generative modeling ≠ reward maximization

generative modeling weights states according to their frequency

but not every state has the same importance for the overall task

this *objective mismatch* can result in sub-optimal final performance

Computation

model-based rollouts are more costly for training / policy optimization

MB

VS.

MF

typically require a value function anyway when using short rollout horizon

generally requires more action samples, due to higher variance estimates

MB: ~10s of samples

MF: often 1 sample

Chua et al., 2018

distillation (MB —> MF)

dyna: use model as simulator for entire MF algorithm

e.g., ME-TRPO, World Models, etc.

value estimator: use model to estimate gradients for policy/value network

e.g., MVE / STEVE, Dreamer, etc.

MBPO does both

Combining MB + MF

we're still trying to understand where and how models should be used

use model to estimate target values

model-based value expansion (MVE) (Feinberg et al., 2018), stochastic ensemble value expansion (STEVE) (Buckman et al., 2018) model-based policy optimization (MBPO) (Janner et al., 2019)

TD loss:
$$(Q_{\pi}(\mathbf{s}_t, \mathbf{a}_t) - r(\mathbf{s}_t, \mathbf{a}_t) - \gamma \mathbb{E}_{\pi, p_{\text{env}}} [Q_{\pi}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})])^2$$

Effectively using model to estimate lower-bias Monte Carlo returns

use model to estimate policy gradients

imagined value gradients (Byravan et al., 2019), dreamer (Hafner et al., 2020) $Q_{\pi}(\mathbf{s}_t, \mathbf{a}_t)$

again, using model to estimate Monte Carlo returns, but now distilled into a policy network

Temporal Abstraction

with a 1-step model, we are limited to planning at the sensing/environment frequency

for long-horizon tasks, planning becomes computation infeasible

estimate long-term average state distribution Rewards 7-model predictions Value estimates Ground truth yellogian Zero-shot long-term predictions... but restricted to current policy Janner et al., 2020

PROJECT IDEAS

Dynamics Distribution Family

explore the effect of modifying the distribution family/factorization

- Gaussian (diagonal or full covariance)
- Other exponential density (Laplace?)
- Mixture of Gaussians
- Flow-Based distribution
- etc.

Rollout Length

explore the effect of changing the rollout length

- analyze bias and variance of model's value estimate w.r.t. the true environment
- compare performance
- dynamically set rollout length? (see STEVE (Buckman et al., 2018))

Model Ensembles

explore the effect of using ensembles of models

- how does performance vary with ensemble size?
- explore different sampling strategies for rollouts (see PETS (Chua et al., 2018))
- visualize cases where model ensembling helps with estimating uncertainty

Policy Optimizer

compare various policy optimizers in the context of a model-based value estimator

- compare accuracy and efficiency
- does better optimization accuracy lead to better performance?
- can optimizers be combined?

Model-Based Generalization

demonstrate task generalization with a model

- explore a multi-task setting in a particular environment, train a model on a subset of tasks and transfer to other tasks
- how well does the model generalize across tasks with varying similarity?

reward for task A

reward for task B

Model-Based + Model-Free

combine model-based and model-free algorithms

- use model-based value targets (MVE, STEVE)
 - explore various target estimation schemes (Monte Carlo, Retrace, etc.)
- use model-based policy gradients (Dreamer)
- use both (Dyna, MBPO)
- some other combination? e.g. distill via imitation learning (Nagabandi et al., 2017)

Additional Resources

Hamrick / Mordatch tutorial on MBRL: https://sites.google.com/view/mbrl-tutorial

very thorough set of references

On the role of planning in MBRL (Hamrick et al., 2021)

Benchmarking MBRL (Wang et al., 2019)

Lambert blog post on Debugging MBRL: https://www.natolambert.com/writing/debugging-mbrl