

Biologically Inspired
Computation

Deep Learning & Convolutional Neural Networks

Joe Marino

biologically inspired computation

biological intelligence

• flexible
• capable of detecting/

executing/reasoning about
high level patterns

• limited by evolutionary
constraints

• slow, imperfect

goal:
build machines that have the
same capabilities as biological
intelligence

use inspiration from biological
intelligence to motivate
engineering and design of these
machines

inputs: pre-synaptic signals

function: non-linear depolarization

output: spike

output = function (inputs)

output = function (inputs)

28

28
“3”

multi-layer perceptron

28

28

28 x 28 x 1 = 784 inputs

784 512 512 10

Network Architecture:

(784 + 1) x 512
= 401,920 weights

(512 + 1) x 512
= 262,656 weights

(512 + 1) x 10
= 5,130 weights

(h x w x channels)

401,920 + 262,656 + 5,130 = 669,706 weights

~ 1,000x as many weights as inputs

375

600

375 x 600 x 3 = 675,000 inputs

• large space of high level concepts
• more variety of patterns
• complex spatial relationships

Additional Difficulties

Natural Images

675,000,000 weights?

How do animals recognize visual stimuli?

Hubel & Wiesel - 1950s

• recorded responses of neurons in primary visual cortex (V1) to
simple stimuli

• found selectivity to bars of specific orientation

Biological Inspiration

Hubel	&	Wiesel,	1959

How do animals recognize visual stimuli?

Simple and Complex Cells

Biological Inspiration

simple cells combine lower
level features (on/off ganglion
responses) within a receptive

field to select for more complex
features

complex cells combine
responses from simple cells

within a larger receptive field to
develop translation invariance

How do animals recognize visual stimuli?

Hierarchical Processing of Visual Features

Biological Inspiration

Kandel	et	al.,	2012

How do animals recognize visual stimuli?

Highly Inter-Connected High Level Visual Areas

Biological Inspiration

Friewald	et	al.,	2009	&	2010

face patches

Natural images can be decomposed into a relatively small set of
low level patterns, i.e. filters.

Objects are translation invariant. It’s not the absolute positions of
patterns that matters, but rather the relative positions.

Engineering Motivation

Exploit the redundancy within the input by sharing
weights within the network.

In a multi-layer perceptron, each layer contains a set of units.
Each unit operates over all units in the previous layer through a
vector of weights.

In a convolutional neural network, each convolutional layer
contains a set of feature maps. Each feature map operates over
all feature maps in the previous layer through a tensor of weights,
a filter.

Convolution

vector of weights

tensor of weights

output unitinput units

input feature maps output feature map

output unit

A feature map is a matrix of units. We calculate a feature map by
convolving the corresponding filter with the previous layer’s
feature maps. This is just a tensor dot product of the filter with the
previous feature maps.

Convolution

input feature maps output feature map

The stride of a convolution is the step size by which you
convolve each filter with the input feature maps. This can be used
to decrease the spatial size of output feature maps.

The padding of a convolution is the amount of space to place
around the boundaries of the input feature maps. This can be
used to maintain the spatial size of output feature maps.

Convolution

stride

padding

Convolutional layers allow us to be selective to features within the
input image. We also want translation invariance with respect to
these features.

We can sub-sample the maximum values of the feature maps to
retain only the (invariant) high-level details. This is called max
pooling.

Pooling

2 6
1 2 6

input feature map output feature map

Pooling also contains a stride and padding, which are analogous
to convolution. A larger stride decreases the feature map’s spatial
size more. Padding preserves the edges.

Pooling

stride

padding

Other
(Biologically Inspired)

Tricks

Sigmoid non-linearities lead to vanishing gradients during
backpropagation in deep networks.

Instead, use rectified linear units (ReLU). This non-linearity does
not suffer from vanishing gradients, allowing for deeper networks.
However, it also has the negative effect of linearizing the network.

Rectified Linear Units (ReLU)

input

output
ReLU

ReLU (x) = max(x, 0)

Nair	et	al.,	2010

With large networks, it is easier to overfit to the training data.
Units may start to co-adapt during training, in which they depend
heavily on each other.

Remedy this by using dropout, randomly turning off units. This
prevents the units from co-adapting, effectively creating an
ensemble of networks within one network.

Dropout

Srivastava	et	al.,	2014

It often helps to normalize the units to a fixed mean and
variance, capturing only the relative differences in the activations
rather than their absolute values. This also has the effect of
preventing co-variate shift, allowing for faster training.

There are multiple ways to normalize the units. The most popular
method is batch normalization.

Normalization

batch mean

batch variance

normalize

scale and shift

batch

batch norm output

Ioffe	et	al.,	2015

It is difficult to train very deep networks: it becomes more difficult
to avoid local minima. For this reason, we can introduce residual
connections, in which the activations are added to their input at
each layer.

Each layer learns a residual function, allowing the network to
maintain important features at deeper layers.

Residual Connections

He	et	al.,	2015,	2016

Multi-Layer Perceptrons
vs.

Convolutional Neural Networks

DEMO

Objects are high-level visual patterns. We want to train
computers to recognize these patterns: pedestrian detection,
visual search, surveillance, etc.

Object Classification

To build a successful object classifier,
we need

data
• ImageNet —> over 14 million images

belonging to over 20,000 object
categories

compute hardware
• GPUs allow parallelized

computation, resulting in significant
speed up over CPU

models
• deep convolutional neural networks

Object Classification

A subset of 1.2 million images from ImageNet is used for the
ImageNet Large Scale Visual Recognition Challenge. This
competition requires entrants to classify objects from 1,000
different categories.

The human top-5 error rate (correct label is not in top 5 guesses)
is about 5%. An estimated 3% of the data is mislabeled.

ILSVRC

Object Classification

DEMO

Deep Network Architectures

Introduced convolutional neural networks

Modeled after Fukushima’s Neocognitron

Achieved state-of-the-art performance on MNIST

LeNet - 1989

LeCun	et	al.,	1989

AlexNet - 2012

7 layers

Introduced training on GPUs

ILSVRC top-5 error rate: 15.3 %

Krizhevsky	et	al.,	2012

VGG - 2014

19 Layers

Many layers of convolutions with 3 x 3 filters

ILSVRC top-5 error rate: 7.4 %

Simonyan	et	al.,	2014

GoogLeNet - 2014

22 Layers

Introduced inception blocks, auxiliary classifiers

ILSVRC top-5 error rate: 6.7 %

Szegedy	et	al.,	2014

ResNet - 2015

He	et	al.,	2014

34 Layers

Introduced residual connections.

ILSVRC top-5 error rate: 3.6 %

Inception-ResNet - 2016

53 Layers

Combined residual connections with inception architecture.

ILSVRC top-5 error rate: 3.5 %

These models are clearly performing well on object classification.

How to we determine what they have learned?

Need some method of “seeing” inside the model to visualize the
information stored in the filters.

The first set of filters is in the image space, so we can visualize
these filters directly:

Filter Visualization

For later layers, there are a variety of methods for visualizing the
filters. Each method finds an image that maximally activates a
particular filter.

• Maximal images from dataset
• Feed in all of the images and keep track of which image

maximally activates a filter

• Deconvolution
• Run the network in reverse to get most important features of

an image for an activated filter

• Gradient ascent in image space
• Backpropagate from a filter to the image itself, modifying the

image to maximally activate the filter

Filter Visualization

Top Image Patches - Layer 2
Filter Visualization

Matt Zeiler

Filter Visualization
Deconv on Top Image Patches - Layer 2

Matt Zeiler

Top Image Patches - Layer 3
Filter Visualization

Matt Zeiler

Deconv on Top Image Patches - Layer 3
Filter Visualization

Matt Zeiler

Top Image Patches - Layer 4
Filter Visualization

Matt Zeiler

Deconv on Top Image Patches - Layer 4
Filter Visualization

Matt Zeiler

Top Image Patches - Layer 5
Filter Visualization

Matt Zeiler

Deconv on Top Image Patches - Layer 5
Filter Visualization

Matt Zeiler

Related to visualizing filters through gradient ascent.

Enforce ‘continuity prior’: produced image must have statistics
similar to natural images

Start from an image, either noise or an actual image. Randomly
enhance various filters throughout the network.

Deep Dream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Neural Style Transfer
Capture high level statistics of one image, i.e. stylistic essence.

Run gradient ascent on new image to match high level statistics
of first image.

Can transfer high-level features between images.

Gatys et al., 2015

Neural Style Transfer

Gatys et al., 2015

Neural Style Transfer

Unsupervised Learning. All training examples need labels, but
this is unrealistic.

Limited Understanding/Reasoning. Great at picking out
patterns, but no deeper understanding.

Low-Shot Learning. These networks need many training
examples of each class. Do not do well with class imbalance.

Limited. How do we make better models?

Open Problems

Hubel, David H., and Torsten N. Wiesel. "Receptive fields and functional architecture of monkey striate cortex." The Journal of physiology 195.1 (1968): 215-243.

Freiwald, Winrich A., Doris Y. Tsao, and Margaret S. Livingstone. "A face feature space in the macaque temporal lobe." Nature neuroscience 12.9 (2009): 1187-1196.

Tsao, Doris Y., Sebastian Moeller, and Winrich A. Freiwald. "Comparing face patch systems in macaques and humans." Proceedings of the National Academy of
Sciences 105.49 (2008): 19514-19519.

LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural computation 1.4 (1989): 541-551.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information
processing systems. 2012.

Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." Proceedings of the 27th International Conference on Machine
Learning (ICML-10). 2010.

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European Conference on Computer Vision. Springer International
Publishing, 2014.

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167
(2015).

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958.

He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015).

He, Kaiming, et al. "Identity mappings in deep residual networks." arXiv preprint arXiv:1603.05027 (2016).

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009.

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." arXiv preprint arXiv:1512.00567 (2015).

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

References

