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biological intelligence

e flexible

e capable of detecting/
executing/reasoning about
high level patterns

* [imited by evolutionary
constraints
* slow, imperfect




goal.
bulld machines that have the

same capabillities as biological
intelligence

use inspiration from biological
intelligence to motivate
engineering and design of these
machines



inputs: pre-synaptic signals
output: spike

function: non-linear depolarization

output = function (inputs)

T’
Lout — O (W Xi'n,)



output = function (inputs)
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multi-layer perceptron
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28 x 28 x 1 = 784 inputs
(h x wx channels)

Network Architecture:

B84 —— 512 — 5H12 —

v v v

(784 + 1) x 512 (512 + 1) x 512 (512 + 1) x 10
= 401,920 weights = 262,656 weights = 5,130 weights

401,920 + 262,656 + 5,130 = 669,706 weights

~ 1,000x as many weights as inputs
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Natural Images

600

375

375 x 600 x 3 = 675,000 inputs > 675,000,000 weights?

Additional Difficulties

* large space of high level concepts
* more variety of patterns
 complex spatial relationships



Biological Inspiration

How do animals recognize visual stimuli?

Hubel & Wiesel - 1950s

Stimulus orientation (deg)

* recorded responses of neurons in primary visual cortex (V1) to
simple stimuli

e found selectivity to bars of specific orientation
Hubel & Wiesel, 1959



Biological Inspiration

How do animals recognize visual stimuli?

Simple and Complex Cells

simple cells combine lower
level features (on/off ganglion
responses) within a receptive
field to select for more complex
features

complex cells combine
responses from simple cells
within a larger receptive field to
develop translation invariance




Biological Inspiration

How do animals recognize visual stimuli?

Hierarchical Processing of Visual Features
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Biological Inspiration

How do animals recognize visual stimuli?

Highly Inter-Connected High Level Visual Areas

face patches
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Engineering Motivation

Natural images can be decomposed into a relatively small set of
low level patterns, i.e. filters.

Objects are translation invariant. It's not the absolute positions of
patterns that matters, but rather the relative positions.

— Exploit the redundancy within the input by sharing
weights within the network.



Convolution

In a multi-layer perceptron, each layer contains a set of units.
Each unit operates over all units in the previous layer through a

vector of weights.

input units O/O output unit

vector of weights

In a convolutional neural network, each convolutional layer
contains a set of feature maps. Each feature map operates over
all feature maps in the previous layer through a tensor of weights,

a filter.

output unit

input feature maps output feature map



Convolution

A teature map is a matrix of units. We calculate a feature map by
convolving the corresponding filter with the previous layer’s

feature maps. This is just a tensor dot product of the filter with the
previous feature maps.

input feature maps output feature map



Convolution

The stride of a convolution is the step size by which you
convolve each filter with the input feature maps. This can be used
to decrease the spatial size of output feature maps.

The padding of a convolution is the amount of space to place
around the boundaries of the input feature maps. This can be
used to maintain the spatial size of output feature maps.

: padding




Pooling

Convolutional layers allow us to be selective to features within the
input iImage. We also want translation invariance with respect to
these features.

We can sub-sample the maximum values of the feature maps to
retain only the (invariant) high-level details. This is called max
pooling.
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input feature map output feature map



Pooling

Pooling also contains a stride and padding, which are analogous
to convolution. A larger stride decreases the feature map’s spatial
size more. Padding preserves the edges.

“strlde

padding




Other

(Biologically Inspired)

Tricks



Rectified Linear Units (ReLU)

Sigmoid non-linearities lead to vanishing gradients during
backpropagation in deep networks.

Instead, use rectified linear units (RelLLU). This non-linearity does
not suffer from vanishing gradients, allowing for deeper networks.
However, it also has the negative effect of linearizing the network.

>

output
RelLU

RelLLU (x) = max(x, 0) >

input

Nair et al., 2010



Dropout

With large networks, it is easier to overfit to the training data.

Units may start to co-adapt during training, in which they depena
heavily on each other.

Remedy this by using dropout, randomly turning oft units. This
prevents the units from co-adapting, ettectively creating an
ensemble of networks within one network.
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Srivastava et al., 2014




Normalization

It often helps to normalize the units to a fixed mean and
variance, capturing only the relative differences in the activations
rather than their absolute values. This also has the effect of
preventing co-variate shift, allowing for faster training.

There are multiple ways to normalize the units. The most popular
method is batch normalization.

batch s
HB < sz batch mean
B = {331, wiare g £L’m} =1
1 m
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batch norm output
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Yi — 7,5(55‘7,) 2 \/0123 T e normalize

Yi < YT; + O scale and shift

loffe et al., 2015



Residual Connections

It is difficult to train very deep networks: it becomes more difficult
to avoid local minima. For this reason, we can introduce residual

connections, in which the activations are added to their input at
each layer.

Each layer learns a residual function, allowing the network to
maintain important features at deeper layers.

L—1

X[ = Xg + ZF(XE,WE)
=0

—-P —

He et al., 2015, 2016



DEMO

Multi-Layer Perceptrons
VS.
Convolutional Neural Networks



Object Classification
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Objects are high-level visual patterns. We want to train
computers to recognize these patterns: pedestrian detection,
visual search, surveillance, etc.



Object Classification

To build a successful object classitier,
we need

data

* ImageNet —> over 14 million images
belonging to over 20,000 object
categories

compute hardware

 GPUs allow parallelized
computation, resulting in significant
speed up over CPU

models
* deep convolutional neural networks




ILSVRC

A subset of 1.2 million images from ImageNet is used for the
ImageNet Large Scale Visual Recognition Challenge. This
competition requires entrants to classity objects from 1,000
different categories.

The human top-5 error rate (correct label is not in top 5 guesses)
IS about 5%. An estimated 3% of the data is mislabeled.



DEMO

Object Classification



Deep Network Architectures



LeNet - 1989

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5
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Introduced convolutional neural networks
Modeled after Fukushima’s Neocognitron

Achieved state-of-the-art performance on MNIST

LeCun et al., 1989



AlexNet - 2012

/ layers
Introduced training on GPUs

ILSVRC top-5 error rate: 15.3 %

Krizhevsky et al., 2012



VGG - 2014
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Many layers of convolutions with 3 x 3 filters

ILSVRC top-5 error rate: 7.4 %

Simonyan et al., 2014



GoogLeNet - 2014
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22 Layers
Introduced inception blocks, auxiliary classifiers

ILSVRC top-5 error rate: 6.7 %

Szegedy et al., 2014



ResNet - 2015
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Inception-ResNet - 2016

53 Layers
Combined residual connections with inception architecture.

ILSVRC top-5 error rate: 3.5 %



Filter Visualization

These models are clearly performing well on object classification.
How to we determine what they have learned?

Need some method of “seeing” inside the model to visualize the
information stored in the filters.

The first set of filters is in the image space, so we can visualize
these filters directly:
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Filter Visualization

For later layers, there are a variety of methods for visualizing the
filters. Each method finds an image that maximally activates a
particular filter.

* Maximal images from dataset
* Feed in all of the images and keep track of which image
maximally activates a filter

* Deconvolution
* Run the network in reverse to get most important features of
an image for an activated filter

e Gradient ascent in image space
* Backpropagate from a filter to the image itself, moditying the
image to maximally activate the filter



Filter Visualization
Top Image Patches - Layer 2
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Filter Visualization
Deconv on Top Image Patches - Layer 2
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Filter Visualization
Top Image Patches - Layer 3
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Filter Visualization
Deconv on Top Image Patches - Layer 3

ayer 3: Top-9 Patéhes

Matt Zeiler



Filter Visualization
Top Image Patches - Layer 4

Matt Zeiler



Filter Visualization
Deconv on Top Image Patches - Layer 4

Lai/er 4: Top-9 Patches

Matt Zeiler



Filter Visualization
Top Image Patches - Layer 5

Matt Zeiler



Filter Visualization
Deconv on Top Image Patches - Layer 5

Layer 5: Top-9 Patches

Matt Zeiler



Deep Dream

Related to visualizing filters through gradient ascent.

Enforce ‘continuity prior’: produced image must have statistics
similar to natural images

Start from an image, either noise or an actual image. Randomly
enhance various filters throughout the network.
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dream
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Neural Style Transfer

Capture high level statistics of one image, i.e. stylistic essence.

Run gradient ascent on new image to match high level statistics
of first image.

Can transfer high-level teatures between images.

Gatys et al., 2015



Neural Style Transfer

Gatys et al., 2015




Neural Style Transfer




Open Problems

Unsupervised Learning. All training examples need labels, but
this is unrealistic.

Limited Understanding/Reasoning. Great at picking out
patterns, but no deeper understanding.

Low-Shot Learning. These networks need many training
examples of each class. Do not do well with class imbalance.

Limited. How do we make better models?

x -
esign(V,J(0,2,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 09.3 % confidence

sign(V,J(0,z,y))
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